Nav: Home

New technology of ultrahigh density optical storage researched at Kazan University

November 30, 2016

According to current estimates, dozens of zettabytes of information will need to be placed somewhere by 2020. New physical principles must be found, the ones that facilitate the use of single atoms or molecules as basic memory cells. This can be done with the help of lasers. However, the existing methods of optical storage are limited to the diffraction limit (~500 nm), so the respective recording density is roughly ~1 Gb per square decimeter.

The limitation can be circumvented by the use of highly localized lasers that can manipulate the spatial orientation of single molecules. The expected storage capacity in this case is up to 1 Pb/dm2 which is approximately equal to 1 million standard DVDs. Regulating radiation beyond the diffraction limit with the help of optical nanoantennas and nanoresonators is the basis for three current research areas -- refractory plasmonics, organic photovoltaics, and near-field optical memory. All of them are in development at the Nano Optics Lab of KFU (headed by Associate Professor Sergey Kharintsev).

Thanks to subdiffraction localization and field enhancement of light single molecule detection technologies develop rapidly. Dr. Kharintsev's team has used this approach for near-field optical recording. Their research appeared in Nanoscale in November 2016. The authors proposed a new principle of optical storage based on tip-enhanced Raman scattering effect.

Localization of laser light is provided by an optical nanoantenna that is illuminated by a focused laser beam with radial and azimuthal polarization. This approach was developed on the basis of optical anisotropy of azo-dye polymer films (published in ACS Photonics). The azo-dyes are orientated perpendicularly to the polarization direction under polarized light. This has proven to be a tricky result to achieve because near-field polarization depends on the geometry and material of the optical antenna (see Physical Review).

Switching between radial and azimuthal polarization capacitates the recording of optical information in the azo-dye absorption band and reading beyond that band. The switching speed depends on the local mobility of the dyes in glassy environment - a parameter that for polymer films is critically dependent on their thickness. The team plans to create a prototype of organic near-field optical memory of up 1 Pb/dm2 density. The following advances in subdiffraction technology will be linked to laser beams with orbital momentum -- such research may further down the road help additionally increase storage density.

Optical disks with petabit capacity will majorly change the efficiency and productivity of cloud services and data centers and disrupt the global storage market. The development of big storage is linked with energy-independent high-speed memory technologies that aim to unite the advantages of random access memory and archive memory. Alternative memory types, such as quantum memory, spin-transfer torque memory, memristors, and ferroelectrical memory, are all still far from practical use.
-end-


Kazan Federal University

Related Molecules Articles:

The inner lives of molecules
Researchers from Canada, the UK and Germany have developed a new experimental technique to take 3-D images of molecules in action.
Novel technique helps ID elusive molecules
Stuart Lindsay, a researcher at Arizona State University's Biodesign Institute, has devised a clever means of identifying carbohydrate molecules quickly and accurately.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
A new way to display the 3-D structure of molecules
Berkeley Lab and UC Berkeley Researchers have developed nanoscale display cases that enables new atomic-scale views of hard-to-study chemical and biological samples.
Bending hot molecules
Hot molecules are found in extreme environments such as the edges of fusion reactors.
At attention, molecules!
University of Iowa chemists have learned about a molecular assembly that may help create quicker, more responsive touch screens, among other applications.
Folding molecules into screw-shaped structures
An international research team describes the methods of winding up molecules into screw-shaped structures.
Artificial molecules
A new method allows scientists at ETH Zurich and IBM to fabricate artificial molecules out of different types of microspheres.
Molecules that may keep you young and alive
A new study may have uncovered the fountain of youth: plant extracts containing the six best groups of anti-aging molecules ever seen.
Fun with Lego (molecules)
A great childhood pleasure is playing with Legos® and marveling at the variety of structures you can create from a small number of basic elements.

Related Molecules Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".