Nav: Home

NTU and Stratasys 3iD print operational ULTEM drone with embedded electronics

November 30, 2016

Researchers at Nanyang Technological University, Singapore (NTU Singapore) have 3D printed a ready-to-fly drone with embedded electronics using aerospace-grade material.

The electronics were incorporated in the drone during the 3D printing process which employs Stratasys ULTEMTM 9085 - a high strength, lightweight FDM material certified for use in commercial aircrafts.

The drone is jointly developed by NTU's Singapore Centre for 3D Printing (SC3DP) and Stratasys Asia Pacific, a subsidiary of Stratasys Ltd. (NASDAQ: SSYS), a 3D printing and additive manufacturing solutions company.

How the Flight-Ready Drone was Built

The drone -- a quadcopter with four rotors -- was designed, 3D printed and flown by Mr Phillip Keane, an NTU PhD candidate from the School of Mechanical and Aerospace Engineering who researches at the university's Singapore Centre for 3D Printing (SC3DP).

In 3D printing, objects are created digitally layer by layer until completion. However, embedding electronics can be a challenge, as most will not survive the high temperatures of the 3D printing process.

Commercial grade electronics were therefore modified and placed within the drone at the various stages of the printing process. They survived the high temperature printing which reached over 160 degrees Celsius, compared to the usual 80 to 100 degrees. Only the motors and the propellers were mounted after the entire chassis was completed.

Mr Keane said: "One of the toughest challenges was to find electronic components that could theoretically survive the high temperature printing process - we had to add some heat-proofing modifications to the components to ensure they could last. This involved adding new components to the printed circuit boards and also designing custom housings."

The drone was completed in under 14 hours. During the printing, there were just three pauses for the electronics to be placed within the chassis.

"The housings which were pre-printed in ULTEM 9085 also provide a flat surface for the 3D printer to continue printing over them. I also had to deal with tight time constraints as some of the components could not survive in the heat for more than 20 minutes."

In addition to being extremely rugged, the drone is capable of supporting over 60kg of weight suspended from its structure. Moving forward, Mr Keane said he is working on the next version of the drone which will feature better durability, lighter weight and improved flight dynamics.

Professor Chua Chee Kai, Executive Director of NTU's SC3DP said that this is a successful example of disruptive innovation that can be achieved when researchers from academia work with industry partners.

"At NTU, we have world leading researchers with vast knowledge of materials and 3D printing processes whohave invented innovative techniques to overcome the limitations of existing technologies," explained Prof Chua, the world's most cited scientist in the field of 3D printing according to the Web of Science, a research database maintained by Thomson Reuters.

"Together with Stratasys' engineers and their intimate knowledge of 3D printing, we were able to push the limits of today's technology and print a drone that is incredibly durable and can withstand high heat."

"This project exemplifies the power of Stratasys' flagship Fused Deposition Modeling (FDM) 3D printing technology and perfectly demonstrates the strength of the ULTEM resin," commented Fred Fischer, Director - Applications and Products, Stratasys Asia Pacific. "We look forward to researching, developing and unveiling more possibilities with 3D printing and materials as we work with industry partners and academia."

ULTEM 9085 is a production-grade thermoplastic that can be 3D printed and is prized for a high strength-to-weight ratio and FST (flame, smoke and toxicity) rating, making it ideal for the commercial transportation industry, especially aerospace.

Professor Louis Phee, Chair, School of Mechanical and Aerospace Engineering at NTU, said that unmanned aerial vehicles (UAV) are a major research thrust at the school. "Being the first university in Singapore to offer an Aerospace Engineering degree programme, we have been successful in attracting the brightest students to work with our professors to push the frontiers of drone technologies to cater to Singapore's unique needs and requirements. In the near future, I expect to see more exciting new drone technologies from NTU that will be translated into real applications."
-end-
Media contact:

Lester Kok
Manager
Corporate Communications Office
Nanyang Technological University
Email: lesterkok@ntu.edu.sg

About Nanyang Technological University

A research-intensive public university, Nanyang Technological University, Singapore (NTU Singapore) has 33,500 undergraduate and postgraduate students in the colleges of Engineering, Business, Science, Humanities, Arts, & Social Sciences, and its Interdisciplinary Graduate School. It has a new medical school, the Lee Kong Chian School of Medicine, set up jointly with Imperial College London.

NTU is also home to world-class autonomous institutes -- the National Institute of Education, S Rajaratnam School of International Studies, Earth Observatory of Singapore, and Singapore Centre for Environmental Life Sciences Engineering -- and various leading research centres such as the Nanyang Environment & Water Research Institute (NEWRI), Energy Research Institute @ NTU (ERI@N) and the Institute on Asian Consumer Insight (ACI).

Ranked 13th in the world, NTU has also been ranked the world's top young university for the last two years running. The University's main campus has been named one of the Top 15 Most Beautiful in the World. NTU also has a campus in Novena, Singapore's medical district.

For more information, visit http://www.ntu.edu.sg

Nanyang Technological University

Related Electronics Articles:

Plant inspiration could lead to flexible electronics
Versatile, light-weight materials that are both strong and resilient are crucial for the development of flexible electronics, such as bendable tablets and wearable sensors.
Nanowires, the future of electronics
The current demand for small-sized electronic devices is calling for fresh approaches in their design.
A new spin on electronics
A University of Utah-led team has discovered that a class of 'miracle materials
Dawn of organic single crystal electronics
Researchers at the Institute for Molecular Science, National Institutes of Natural Sciences (Japan) have developed a method for high performance doping of organic single crystal.
Light has new capacity for electronics
In 'Minority Report,' the protagonist uses gloves that give him the power of virtual manipulation.
Electronics to control plant growth
A drug delivery ion pump constructed from organic electronic components also works in plants.
Streamlining mass production of printable electronics
While memory devices are becoming progressively more flexible, their ease of fabrication and integration in low performance applications have been generally been treated as being of secondary importance.
Jumping droplets whisk away hotspots in electronics
Engineers have developed a technology to cool hotspots in high-performance electronics using the same physical phenomenon that cleans the wings of cicadas.
Organic electronics can use power from socket
Organic light-emitting devices and printed electronics can be connected to a socket in the wall by way of a small, inexpensive organic converter, developed in a collaboration between Linköping University and Umeå University.
A new spin on electronics
Modern computer technology is based on the transport of electric charge in semiconductors.

Related Electronics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".