Nav: Home

New research provides key insight about mitochondrial replacement therapy

November 30, 2016

PORTLAND, Ore. - A new discovery may unlock the answer to a vexing scientific question: How to conduct mitochondrial replacement therapy, a new gene-therapy technique, in such a way that safely prevents the transmission of harmful mitochondrial gene mutations from mothers to their children.

A study to be published Nov. 30 in the journal Nature suggests that clinicians select egg donors whose mitochondrial DNA (mtDNA) is compatible to the mother's ancestral mitochondria. Similar groups of mitochondrial DNA are known as haplotypes, each of which represents major branching points on the human genetic family tree.

"This research suggests that we're going to have the greatest success rates for producing an embryo free of disease-causing genetic mutations by making sure we are using the right combination of haplotypes," said senior author Shoukhrat Mitalipov, Ph.D., who directs the Center for Embryonic Cell and Gene Therapy at OHSU.

Mitochondrial replacement therapy offers hope for women genetically predisposed to pass on mutant mitochondria, the tiny powerhouses inside nearly every cell of the body. Mitochondrial DNA is passed only from mothers to their children. Mutations can cause a range of potentially fatal disorders affecting organs with high-energy demands such as the heart, muscle and brain.

Mitochondrial replacement therapy, which has been approved for clinical trials in the United Kingdom, involves swapping faulty mitochondria for those of a healthy donor. Mitalipov previously pioneered the spindle-transfer technique, in which the nucleus - or spindle - of a mother's egg is transferred into a donor egg stripped of its nucleus. Mitalipov successfully demonstrated this technique with rhesus macaque monkeys in 2009.

Yet even a small amount of mutant mitochondrial DNA carried over with the mother's nucleus can replicate quickly as the embryo develops - possibly causing the disease that the therapy was designed to prevent. Today's study suggests a way to prevent mothers from passing on mutant mitochondria.

Mitalipov and colleagues recruited four families who have children suffering from Leigh Syndrome and one with a neurodegenerative disorder called MELAS. They also collected donor eggs from 11 healthy women, screened to confirm that they did not carry inherited pathogenic mutations in their mtDNA.

Spindles from carrier eggs were transferred into 36 donor eggs stripped of their nuclei, fertilized and cultured to blastocysts, and subsequently to embryonic stem cell lines. Most developed with the donor's healthy mitochondrial DNA continuing to dominate. However, a few stem cell lines displayed gradual return to the maternal mtDNA. As those stem cell lines continued to grow in the laboratory, they reverted completely to the original maternal mitochondrial DNA.

Scientists wanted to find out why.

"Currently, there is a lack of studies on the efficacy and safety of oocytes derived from women carrying pathogenic mtDNA mutations," said co-author Juan Carlos Izpisua Belmonte, Ph.D., with the Salk Institute for Biological Studies in La Jolla, California. "Our study fills the gap."

Researchers zeroed in on a portion of the mtDNA known as the D-loop, which initiates replication of the entire genetic sequence. There they discovered DNA code polymorphisms that result in preferential replication of the mother's mtDNA. In addition, some maternal mtDNA haplotypes give host cells a faster growth advantage. Researchers are proposing donor mtDNA matching criteria to avoid a return of mutant mitochondria in order to safely move mitochondrial replacement therapy into clinical trials.

"Our research has suggested a plausible cause of preferential replication of specific mtDNA haplotypes that should enable us to zero in on ways to identify better matches between donors and recipients," said co-author Dmitry Temiakov, Ph.D., with the Rowan University School of Osteopathic Medicine in Stratford, New Jersey.

Oregon Health & Science University

Related Gene Therapy Articles:

Mysterious gene transcripts after cancer therapy
Drugs that are used in cancer therapy to erase epigenetic alterations in cancer cells simultaneously promote the production of countless mysterious gene transcripts, scientists from the German Cancer Research Center now report in Nature Genetics.
Gene therapy could 'turn off' severe allergies
A single treatment giving life-long protection from severe allergies such as asthma could be made possible by immunology research at The University of Queensland.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
New gene therapy for pseudarthrosis trialed at Kazan University
A team headed by Professor Albert Rizvanov, director of the Gene and Cell Technologies Open Lab, created a gene therapy drug that encodes growth factors for the stimulation of blood vessel and bone formation.
WSU researcher develops safer gene therapy
A Washington State University researcher has developed a way to reduce the development of cancer cells that are an infrequent but dangerous byproduct of gene therapy.
New gene therapy prevents muscle wasting associated with cancer
A new gene therapy could be used to prevent the loss of muscle mass and physical strength associated with advanced cancer
On the path to controlled gene therapy
The ability to switch disease-causing genes on and off remains a dream for many physicians, research scientists and patients.
Gene therapy against brain cancer
A team from the International School for Advanced Studies (SISSA) in Trieste has obtained very promising results by applying gene therapy to glioblastoma.
First gene therapy successful against human aging
Elizabeth Parrish, CEO of Bioviva USA Inc. has become the first human being to be successfully rejuvenated by gene therapy, after her own company's experimental therapies reversed 20 years of normal telomere shortening.
Designing gene therapy
Scientists in the Barabas group at EMBL have increased the efficiency of a genome-engineering tool called Sleeping Beauty, which is showing promise in clinical trials for leukemia and lymphoma immunotherapies.

Related Gene Therapy Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...