Less division of labor in the brains of people with autism

November 30, 2016

Divvying up tasks between the left and right hemispheres of the brain is one of the hallmarks of typical brain development. The left hemisphere, for instance, is involved in analyzing specific details of a situation, while the right hemisphere is involved in integrating all the various streams of information coming into the brain.

A new study by neuropsychologists at San Diego State University suggests that in people with autism spectrum disorder (ASD) the brains' hemispheres are less likely to specialize one way or another. The finding gives further insight into how brain development in people with ASD contributes to the disorder's cognitive characteristics.

The study, led by Ralph-Axel Müller and Ruth Carper of SDSU's Brain Development Imaging Lab (BDIL), investigated how connections within the brain develop differently in children and adolescents with ASD than in their typically developing peers. Shannon Yandall DeJesus, an undergraduate psychology student at SDSU, and Jeffrey Treiber, an SDSU alumnus currently in medical school at the University of California, San Diego, also contributed to the study.

Using a magnetic resonance imaging (MRI) technique known as diffusion tensor imaging, the team studied the brains of 41 participants with ASD and 44 without, examining how densely connections formed between different regions of white matter in the brain. They found that in typically developing young people, the right brain hemispheres had densely packed connections.

"This fits with the idea that the right hemisphere has a more integrative function, bringing together many kinds of information," the team wrote in a summary of their research.

However, in the participants with ASD, these brain connections were more evenly distributed across both hemispheres. The findings are published in the December issue of the Journal of the American Academy of Child & Adolescent Psychiatry.

"The idea behind asymmetry in the brain is that there is a division of labor between the two hemispheres," Müller said. "It appears this division of labor is reduced in people with autism spectrum disorder."

That lack of specialization could manifest itself in what Müller calls "weak central coherence"--a concept best summed up in the idiom, "not seeing the forest for the trees." Many people with ASD are very good at seeing details but have difficulty putting it all together into a cohesive narrative, he explained.

More research is needed to determine whether these brain-connection asymmetries cause this inability to cohesively assemble information, or are actually the result of it, Müller added. That and other future research will benefit from SDSU's first imaging facility, which will play a central role within the Engineering and Interdisciplinary Sciences Complex, scheduled to open in 2018. The facility's MRI machine will be installed early next year.
-end-


San Diego State University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.