Suggestions for you: A better, faster recommendation algorithm

November 30, 2016

The internet is rife with recommendation systems, suggesting movies you should watch or people you should date. These systems are tuned to match people with items, based on the assumption that similar people buy similar things and have similar preferences. In other words, an algorithm predicts which items you will like based only on your, and the item's, previous ratings.

But many existing approaches to making recommendations are simplistic, says physicist and computer scientist Cristopher Moore, a Santa Fe Institute professor. Mathematically, these methods often assume people belong to single groups, and that each one group of people prefers a single group of items. For example, an algorithm might suggest a science fiction movie to someone who had previously enjoyed another different science fiction movie-- - even if the movies have nothing else in common.

"It's not as if every movie belongs to a single genre, or each viewer is only interested in a single genre," says Moore. "In the real world, each person has a unique mix of interests, and each item appeals to a unique mix of people."

In a new paper in the Proceedings of the National Academy of Sciences, Moore and his collaborators introduce a new recommendation system that differs from existing models in two major ways. First, it allows individuals and items to belong to mixtures of multiple overlapping groups. Second, it doesn't assume that ratings are a simple function of similarity ; -- instead, it predicts probability distributions of ratings based on the groups to which the person or item belongs.

This flexibility makes the new model more realistic than existing models that posit a linear relationship between users and items, says Moore. Not everyone enjoys rating things, and not everyone uses ratings in the same way -- if a person rates a movie 5 instead of 1, that doesn't mean she likes it five times as much. The new model can learn nonlinear relationships between users and ratings over time.

Moore and his collaborators tested their model on five large datasets, including recommendations systems for songs, movies, and romantic partners. In each case, the new model's predicted ratings proved more accurate than those from existing systems -- and their algorithm is faster than competing methods as well.

Moore is motivated by the opportunity to explore rich data sets and networks, where nodes and links have locations, content, and costs. "Our algorithm is powerful because it is mathematically clear," he says. "That makes it a valuable part of the portfolio of methods engineers can use."

"Now if we can just get people to read news they ought to, instead of what they like," Moore says. "But that's a much harder problem."

The paper, "Accurate and scalable social recommendation using mixed-membership stochastic block models," was published November 23 in PNAS, co-authored by Chris Moore of the Santa Fe Institute and Antonia Godoy-Lorite, Roger Guimerà, and Marta Sales-Pardo, all of the Universitat Rovira i Virgili, Spain.

Santa Fe Institute

Related Algorithm Articles from Brightsurf:

CCNY & partners in quantum algorithm breakthrough
Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers.

Machine learning algorithm could provide Soldiers feedback
A new machine learning algorithm, developed with Army funding, can isolate patterns in brain signals that relate to a specific behavior and then decode it, potentially providing Soldiers with behavioral-based feedback.

New algorithm predicts likelihood of acute kidney injury
In a recent study, a new algorithm outperformed the standard method for predicting which hospitalized patients will develop acute kidney injury.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

QUT algorithm could quash Twitter abuse of women
Online abuse targeting women, including threats of harm or sexual violence, has proliferated across all social media platforms but QUT researchers have developed a sophisticated statistical model to identify misogynistic content and help drum it out of the Twittersphere.

New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.

Algorithm predicts risk for PTSD after traumatic injury
With high precision, a new algorithm predicts which patients treated for traumatic injuries in the emergency department will later develop posttraumatic stress disorder.

New algorithm uses artificial intelligence to help manage type 1 diabetes
Researchers and physicians at Oregon Health & Science University have designed a method to help people with type 1 diabetes better manage their glucose levels.

A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.

New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.

Read More: Algorithm News and Algorithm Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to