Nav: Home

Manmade earthquakes in Oklahoma on the decline

November 30, 2016

New regulations in Oklahoma that call for reductions in the amount of wastewater being injected into seismically active areas should significantly decrease the rate of manmade, or "induced," earthquakes in the state, Stanford scientists say.

"Over the past few years, Oklahoma tried a number of measures aimed at reducing the rising number of induced quakes in the state, but none of those actions were effective," said Mark Zoback, the Benjamin M. Page Professor at Stanford's School of Earth, Energy & Environmental Sciences.

While wastewater from oil and gas drilling have been disposed of through underground injection in this area for many decades, induced seismicity was not a problem until the volumes being injected were massively increased, starting around 2009. In the past six years, billions of barrels of wastewater were injected into the Arbuckle formation, a highly permeable rock unit sitting directly on top of billion-year-old rocks containing numerous faults.

Research Zoback and his graduate student Rall Walsh published last year established the correlation in space and time between the areas where the massive injection was occurring and the induced earthquakes. They showed how pressure buildup resulting from the wastewater injection can spread out over large areas and trigger earthquakes tens of miles from the injection wells.

In light of these findings, the state's public utilities commission -- called the Oklahoma Corporation Commission --last spring called for a 40 percent reduction in the volume of wastewater being injected. The bulk of that wastewater comes from oil production in several water-bearing rock formations that had not been extensively drilled until a few years ago.

A new physics-based statistical model developed by Stanford postdoctoral fellow Cornelius Langenbruch and Zoback, and detailed online this week in the journal Science Advances, predicts that the continued reduction of injected wastewater will lead to a significant decline in the rate of widely-felt earthquakes -- defined as quakes measuring magnitude 3.0 or above -- and a return to the historic background level in about five years.

"When the volume of wastewater injection peaked in 2015, Oklahoma was experiencing two or more magnitude 3.0 earthquakes per day. Before 2009, when wastewater injection really started ramping up, the rate was about one per year.

"Several months after wastewater injection began decreasing in mid-2015, the earthquake rate started to decline," Langenbruch said. "There is no question that there is a significantly lower seismicity rate than there was a year ago."

Unfortunately, even though the rate of induced quakes will continue declining, the probability of potentially damaging earthquakes like the magnitude 5.8 earthquake that struck the town of Pawnee in September (the largest to have occurred in Oklahoma in historic time) will remain elevated for a number of years, the Stanford scientists say.

"As long as elevated pressure persists throughout this region," Zoback said, "there will be an increased risk of triggering damaging earthquakes."
-end-
Mark Zoback is also a senior fellow at Stanford's Precourt Institute for Energy, an affiliate of the Stanford Woods Institute for the Environment, and the director of the Stanford Natural Gas Initiative. Funding for this study was provided by the Stanford Center for Induced and Triggered Seismicity.

Stanford's School of Earth, Energy & Environmental Sciences

Related Earthquake Articles:

Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.
Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.
Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.
How fluid viscosity affects earthquake intensity
A young researcher at EPFL has demonstrated that the viscosity of fluids present in faults has a direct effect on the intensity of earthquakes.
Earthquake in super slo-mo
A big earthquake occurred south of Istanbul in the summer of 2016, but it was so slow that nobody noticed.
A milestone for forecasting earthquake hazards
In a new study in Science Advances, researchers report that their physics-based model of California earthquake hazards replicated estimates from the state's leading statistical model.
Mw 5.4 Pohang earthquake tied to geothermal activity?
The Mw 5.4 Pohang earthquake that occurred near a geothermal site in South Korea last year was likely triggered by fluid injection at the geothermal plant, two separate reports conclude.
Seismologists introduce new measure of earthquake ruptures
A team of seismologists has developed a new measurement of seismic energy release that can be applied to large earthquakes.
Residual strain despite mega earthquake
On Christmas Day 2016, the earth trembled in southern Chile.
The losses that come after the earthquake: Devastating and costly
The study, titled, 'Losses Associated with Secondary Effects in Earthquakes,' published by Frontiers in Built Environmen, looks at the devastation resulting from secondary disasters, such as tsunamis, liquefaction of sediments, fires, landslides, and flooding that occurred during 100 key earthquakes that occurred from 1900 to the present.
More Earthquake News and Earthquake Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab