Nav: Home

A receptor discovered for progranulin

November 30, 2016

PHILADELPHIA -- Progranulin is produced and secreted by most cells in the body. From skin to immune cells, brain to bone marrow cells, progranulin plays a key role in maintaining normal cellular function. In cancer, too much progranulin makes tumors (particularly prostate carcinomas) more aggressive and metastatic, whereas in neurodegenerative diseases, too little is associated with disease onset and progression. Until now, studying progranulin has been tricky as the receptor that communicates biological information to the cell's signaling machinery has remained elusive for decades. Now, researchers at Thomas Jefferson University'sSidney Kimmel Cancer Center discovered a cell-surface receptor highly expressed by cancerous and brain cells that directly and tightly binds progranulin. Importantly, the researchers also showed that this binding activates a cellular program that makes cancer cells more aggressive. The results were published in The Journal of Cell Biology.

"Identifying the functional signaling receptor for progranulin will help us understand how this molecule functions in cancer and whether pharmacologically targeting it will slow the progression of a number of cancers," says Renato V. Iozzo, M.D., Ph.D., Gonzalo E. Aponte Professor and Deputy Chair of the Department of Pathology, Anatomy & Cell Biology at Thomas Jefferson University and researcher at the Sidney Kimmel Cancer Center at Jefferson. "It may also help researchers better understand the role of progranulin function and deficiency in neurodegenerative diseases including Parkinson's, Alzheimer's, and possibly even autism."

Using an array of unbiased biochemical and cellular approaches, the researchers demonstrated that Ephrin type-A receptor 2, or EphA2, bound tightly to progranulin. Following progranulin binding, key components of the intracellular signaling apparatus that are involved in both cancer-promoting and perhaps neurodegenerative processes known as Akt and Erk1/2, were rapidly activated. When EphA2 was blocked, however, these pathways did not activate. The researchers further showed that progranulin binding triggered a positive feed-forward loop, wholly dependent on EphA2 signaling that increased the secretion of progranulin from the cancer cell. Finally, when EphA2 was depleted from endothelial cells, progranulin failed to trigger the formation of new blood vessels, a process considered essential for progressive tumor growth and metastasis.

Researchers had previously identified other receptors with progranulin-binding abilities: sortilin and tumor necrosis factor receptor 1 and 2 (TNFR1/2). Sortilin is capable of binding progranulin outside the cell and internalizing it, while TNFR1/2 are receptors primarily involved in coordinating inflammatory responses. Recent reports had cast doubt as to whether these two candidate receptors were bona fide progranulin receptors. In one instance, changes in neuronal outgrowth were seen even when sortilin was absent and some evidence questioned whether TNFR1/2 could bind directly to progranulin at all.

Indeed, when Dr. Iozzo and colleagues removed sortilin from the cells expressing EphA2, they found that sortilin was not necessary for progranulin/EphA2 signaling. They found that cells lacking sortilin accumulate progranulin outside of the cell, and can therefore increase the bioavailability of progranulin to signal via EphA2 to augment more progranulin production. In pathological situations where progranulin levels are vital, understanding the mechanism of the progranulin/EphA2 feedback loop may prove key to disease development and progression.

"The discovery of EphA2 as a receptor for progranulin is somewhat unexpected, in part because it was commonly believed that Ephrin receptors only bound other members of the vast Ephrin family," said Dr. Iozzo. "This finding turns that expectation on its head, and offers new tools and concepts for exploring pathological, and homeostatic functions of progranulin."
-end-
This work was supported in part by National Institutes of Health grants RO1 CA39481, RO1 CA47282, RO1 CA164462, and NIH training grant T32 AR060715-04. The authors report no conflicts of interest.

Article reference: T Neill, et al., "EphA2 is a functional receptor for the growth factor progranulin." J Cell Biol. 2016.

About Jefferson

Jefferson, through its academic and clinical entities of Thomas Jefferson University and Jefferson Health, including Abington Health and Aria Health, is reimagining health care for the greater Philadelphia region and southern New Jersey. Jefferson has 23,000 people dedicated to providing the highest-quality, compassionate clinical care for patients, educating the health professionals of tomorrow, and discovering new treatments and therapies to define the future of care. With a university and hospital that date to 1824, today Jefferson is comprised of six colleges, nine hospitals, 34 outpatient and urgent care locations, and a multitude of physician practices throughout the region, serving more than 100,000 inpatients, 373,000 emergency patients and 2.2 million outpatient visits annually.

For more information and a complete listing of Jefferson services and locations, visit http://www.jefferson.edu.

Thomas Jefferson University

Related Cancer Articles:

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...