Nav: Home

It's a bird... It's a plane... It's the tiniest asteroid!

November 30, 2016

Astronomers have obtained observations of the smallest asteroid ever characterized in detail. At 2 meters (6 feet) in diameter, the tiny space rock is small enough to be straddled by a person in a hypothetical space-themed sequel to the iconic bomb-riding scene in the movie "Dr. Strangelove."

Interestingly, the asteroid, named 2015 TC25, is also one of the brightest near-Earth asteroids ever discovered. Using data from four different telescopes, a team of astronomers led by Vishnu Reddy, an assistant professor at the University of Arizona's Lunar and Planetary Laboratory, reports that 2015 TC25 reflects about 60 percent of the sunlight that falls on it.

Discovered by the UA's Catalina Sky Survey last October, 2015 TC25 was studied extensively by Earth-based telescopes during a close flyby that saw the micro world sailing past Earth at 128,000 kilometers, a mere third of the distance to the moon.

In a paper published in The Astronomical Journal, Reddy argues that new observations from the NASA Infrared Telescope Facility and Arecibo Planetary Radar show that the surface of 2015 TC25 is similar to a rare type of highly reflective meteorite called an aubrite. Aubrites consist of very bright minerals, mostly silicates, that formed in an oxygen-free, basaltic environment at very high temperatures. Only one out of every 1,000 meteorites that fall on Earth belong to this class.

"This is the first time we have optical, infrared and radar data on such a small asteroid, which is essentially a meteoroid," Reddy said. "You can think of it as a meteorite floating in space that hasn't hit the atmosphere and made it to the ground -- yet."

Small near-Earth asteroids such as 2015 TC25 are in the same size range as meteorites that fall on Earth. Astronomers discover them frequently, but not very much is known about them as they are difficult to characterize. By studying such objects in more detail, astronomers hope to better understand the parent bodies from which these meteorites originate.

Asteroids are remaining fragments from the formation of the solar system that mostly orbit the sun between the orbits of Mars and Jupiter today. Near-Earth asteroids are a subset that cross Earth's path. So far, more than 15,000 near-Earth asteroids have been discovered.

Scientists are interested in meteoroids because they are the precursors to meteorites impacting Earth, Reddy said.

"If we can discover and characterize asteroids and meteoroids this small, then we can understand the population of objects from which they originate: large asteroids, which have a much smaller likelihood of impacting Earth," he said. "In the case of 2015 TC25, the likelihood of impacting Earth is fairly small."

The discovery also is the first evidence for an asteroid lacking the typical dust blanket -- called regolith -- of most larger asteroids. Instead, 2015 TC25 consists essentially of bare rock. The team also discovered that it is one of the fastest-spinning near-Earth asteroids ever observed, completing a rotation every two minutes.

Probably, 2015 TC25 is what planetary scientists call monolithic, meaning it is more similar to a "solid rock" type of object than a "rubble pile" type of object like many large asteroids, which often consist of many types of rocks held together by gravity and friction. Bennu, the object of the UA-led OSIRIS-REx sample return mission, is believed to be the latter type.

As far as the little asteroid's origin is concerned, Reddy believes it probably was chipped off by another impacting rock from its parent, 44 Nysa, a main-belt asteroid large enough to cover most of Los Angeles.

"Being able to observe small asteroids like this one is like looking at samples in space before they hit the atmosphere and make it to the ground," Reddy say. "It also gives us a first look at their surfaces in pristine condition before they fall through the atmosphere."
-end-
The telescope consortium used in this project includes University of Hawaii/NASA IRTF, USRA/Arecibo Planetary Radar, New Mexico Institute of Mining and Technology/Magdalena Ridge Observatory, Northern Arizona University and Lowell Observatory/Discovery Channel Telescope. Reddy's research on 2015 TC25 is funded by NASA's Near-Earth Object Observations program.

Research paper:

"Physical Characterization of ~2-Meter Diameter Near-Earth Asteroid 2015 TC25: A Possible Boulder from E-type Asteroid (44) Nysa" by Vishnu Reddy et al, 2016, The Astronomical Journalhttp://aj.aas.org. The paper is online at http://tinyurl.com/hhgrlm3

University of Arizona

Related Asteroid Articles:

An iron-clad asteroid
Mineralogists from Jena and Japan discover a previously unknown phenomenon in soil samples from the asteroid 'Itokawa': the surface of the celestial body is covered with tiny hair-shaped iron crystals.
Asteroid impact enriches certain elements in seawater
University of Tsukuba researchers found two processes immediately after the end-Cretaceous asteroid impact that likely supplied chalcophile elements to the ocean, i.e., impact heating and acid rain.
Turbulent times revealed on Asteroid 4 Vesta
Planetary scientists at Curtin University have shed some light on the tumultuous early days of the largely preserved protoplanet Asteroid 4 Vesta, the second largest asteroid in our solar system.
In death of dinosaurs, it was all about the asteroid -- not volcanoes
Volcanic activity did not play a direct role in the mass extinction event that killed the dinosaurs, according to an international, Yale-led team of researchers.
Active asteroid unveils fireball identity
At around 1 a.m. local standard time on April 29, 2017, a fireball flew over Kyoto, Japan.
It really was the asteroid
Fossil remains of tiny calcareous algae not only provide information about the end of the dinosaurs, but also show how the oceans recovered after the fatal asteroid impact.
Gigantic asteroid collision boosted biodiversity on Earth
An international study led by researchers from Lund University in Sweden has found that a collision in the asteroid belt 470 million years ago created drastic changes to life on Earth.
Uncovering the hidden history of a giant asteroid
A massive 'hit-and-run' collision profoundly impacted the evolutionary history of Vesta, the brightest asteroid visible from Earth.
Hubble watches spun-up asteroid coming apart
A small asteroid has been caught in the process of spinning so fast it's throwing off material, according to new data from NASA's Hubble Space Telescope and other observatories.
Hubble captures rare active asteroid
Thanks to an impressive collaboration bringing together data from ground-based telescopes, all-sky surveys and space-based facilities -- including the NASA/ESA Hubble Space Telescope -- a rare self-destructing asteroid called 6478 Gault has been observed.
More Asteroid News and Asteroid Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.