Nav: Home

Modeling offers new perspective on how Pluto's 'icy heart' came to be

November 30, 2016

Pluto's "icy heart" is a bright, two-lobed feature on its surface that has attracted researchers ever since its discovery by the NASA New Horizons team in 2015. Of particular interest is the heart's western lobe, informally named Sputnik Planitia, a deep basin containing three kinds of ices -- frozen nitrogen, methane and carbon monoxide -- and appearing opposite Charon, Pluto's tidally locked moon. Sputnik Planitia's unique attributes have spurred a number of scenarios for its formation, all of which identify the feature as an impact basin, a depression created by a smaller body striking Pluto at extremely high speed.

A new study led by Douglas Hamilton, professor of astronomy at the University of Maryland, instead suggests that Sputnik Planitia formed early in Pluto's history and that its attributes are inevitable consequences of evolutionary processes. The study was published in the journal Nature on December 1, 2016.

"The main difference between my model and others is that I suggest that the ice cap formed early, when Pluto was still spinning quickly, and that the basin formed later and not from an impact," said Hamilton, who is lead author of the paper. "The ice cap provides a slight asymmetry that either locks toward or away from Charon when Pluto's spin slows to match the orbital motion of the moon."

Using a model he developed, Hamilton found that the initial location of Sputnik Planitia could be explained by Pluto's unusual climate and its spin axis, which is tilted by 120 degrees. For comparison, Earth's tilt is 23.5 degrees. Modeling the dwarf planet's temperatures showed that when averaged over Pluto's 248-year orbit, the 30 degrees north and south latitudes emerged as the coldest places on the dwarf planet, far colder than either pole. Ice would have naturally formed around these latitudes, including at the center of Sputnik Planitia, which is located at 25 degrees north latitude.

Hamilton's model also showed that a small ice deposit naturally attracts more ices by reflecting away solar light and heat. Temperatures remain low, which attracts more ice and keeps the temperature low, and the cycle repeats. This positive feedback phenomenon, called the runaway albedo effect, would eventually lead to a single dominating ice cap, like the one observed on Pluto. However, Pluto's basin is significantly larger than the volume of ice it contains today, suggesting that Pluto's heart has been slowly losing mass over time, almost as if it was wasting away.

Even so, the single ice cap represents an enormous weight on Pluto's surface, enough to shift the dwarf planet's center of mass. Pluto's rotation slowed gradually due to gravitational forces from Charon, just as Earth is slowly losing spin under similar forces from its moon. However, because Charon is so large and so close to Pluto, the process led to Pluto locking one face toward its moon in just a few million years. The large mass of Sputnik Planitia would have had a 50 percent chance of either facing Charon directly or turning as far away from the moon as possible.

"It is like a Vegas slot machine with just two states, and Sputnik Planitia ended up in the latter position, centered at 175 degrees longitude," said Hamilton.

It would also be easy for the accumulated ice to create its own basin, simply by pushing down, according to Hamilton.

"Pluto's big heart weighs heavily on the small planet, leading inevitably to depression," said Hamilton, noting that the same phenomenon happens on Earth: the Greenland Ice Sheet created a basin and pushed down the crust that it rests upon.

While Hamilton's model can explain both the latitude and longitude of Sputnik Planitia, as well as the fact that the ices exist in a basin, several other models were also presented in the December 1, 2016 issue of the journal Nature.

In one of those papers, UC Santa Cruz Professor of Earth and Planetary Sciences Francis Nimmo, Hamilton and their co-authors modeled how Sputnik Planitia may have formed if its basin was caused by an impact, such as the one that created Charon. Their results showed that the basin may have formed after Pluto slowed its rotation, migrating only slightly to its present location. If this late formation scenario proves correct, the properties of Sputnik Planitia may hint at the presence of a subsurface ocean on Pluto.

"Either model is viable under the right conditions," said Hamilton. "While we cannot conclude definitively that there is an ocean under Pluto's icy shell, we also cannot state that there is not one."

Although Pluto was stripped of its status as a planet, an ice cap is a surprisingly Earth-like property. In fact, Pluto is only the third body -- Earth and Mars being the others--known to possess an ice cap. The ices of Sputnik Planitia may therefore offer hints relevant to more familiar ices here on Earth.
-end-
This research was supported by NASA's New Horizons project. The content of this article does not necessarily reflect the views of this organization.

The research paper, "The rapid formation of Sputnik Planitia early in Pluto's history," Douglas P. Hamilton; S. A. Stern; J. M. Moore; L. A. Young; and the New Horizons Geology, Geophysics & Imaging Theme Team, was published in the journal Nature on December 1, 2016.

Media Relations Contact:

Irene Ying
301-405-5204
zying@umd.edu
University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, Md. 20742
http://www.cmns.umd.edu
@UMDscience

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 7,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $150 million.

University of Maryland

Related Pluto Articles:

Hubble spots moon around third largest dwarf planet
Astronomers uncovered a moon orbiting the third largest dwarf planet, 2007 OR10, in the frigid outskirts of our solar system called the Kuiper Belt.
Astrophysicists find that planetary harmonies around TRAPPIST-1 save it from destruction
U of T astrophysicists create a digital symphony to highlight the unique configuration of the recently discovered TRAPPIST-1 system.
ALMA investigates 'DeeDee,' a distant, dim member of our solar system
Using the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers have revealed extraordinary details about a recently discovered far-flung member of our solar system, the planetary body 2014 UZ224, more informally known as DeeDee.
Scientists make the case to restore Pluto's planet status
Kirby Runyon wants to make one thing clear: regardless of what one prestigious scientific organization says to the contrary, Pluto is a planet.
Official naming of surface features on Pluto and its satellites: First step approved
The New Horizons flyby of Pluto and its satellites returned a scientific treasure trove of information about these distant and surprisingly complex worlds, showing a vast nitrogen glacier as well as ice mountains, canyons, cliffs, craters and more.
New data about 2 distant asteroids give a clue to the possible 'Planet Nine'
The dynamical properties of these asteroids, observed spectroscopiccally for the first time using the Gran Telescopio CANARIAS, suggest a possible common origin and give a clue to the existence of a planet beyond Pluto, the so-called 'Planet Nine.'
How a moon slows the decay of Pluto's atmosphere
A new study from the Georgia Institute of Technology provides additional insight into relationship between Pluto and its moon, Charon, and how it affects the continuous stripping of Pluto's atmosphere by solar wind.
York U research identifies icy ridges on Pluto
Using a model similar to what meteorologists use to forecast weather on Earth and a computer simulation of the physics of evaporating ices, a new study by York University's Professor John Moores, Department of Earth and Space Science and Engineering at York's Lassonde School of Engineering, has found evidence that snow and ice features previously only seen on Earth, have been spotted on Pluto.
Modeling offers new perspective on how Pluto's 'icy heart' came to be
Pluto's 'icy heart' is a bright, two-lobed feature on its surface that has attracted researchers ever since its discovery.
New analysis adds to support for a subsurface ocean on Pluto
A liquid ocean lying deep beneath Pluto's frozen surface is the best explanation for features revealed by NASA's New Horizons spacecraft, according to a new analysis.

Related Pluto Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".