Army researchers seek better batteries

November 30, 2017

A team of Army scientists working on more efficient batteries recently published new findings in a peer-reviewed publication from the American Chemical Society.

In an invited paper published in the special issue of the Accounts of Chemical Research, Dr. Oleg Borodin, along with collaborators Drs. Arthur von Wald Cresce, Jaroslaw Knap, Xiaoming Ren and Kang Xu from the U.S. Army Research Laboratory, discussed modeling insights into battery electrolyte structure and stability.

The theme of the publication's special issue showcases the "investigation of electrical energy storage over multiple length scales."

"Lithium-ion batteries dominate energy storage for portable electronics and are penetrating automotive and grid-storage applications," Borodin said. "Further progress depends not only on the development of a new high capacity electrode, but also on tailoring electrolytes in order to support fast and yet reversible lithium transport through the bulk electrolyte and across interfaces."

Borodin is a senior computational chemist at the ARL Electrochemistry Branch.

"He is well recognized in the field for his trailblazing work of molecular dynamics simulation," Xu said. "His predictive calculation significantly helped his experimental colleagues in developing new electrolyte and interface chemistries."

Electrolytes

For batteries to work, electrolytes -- a substance that is sandwiched between positive and negative electrodes, must conduct electric current in ionic form while insulating any electron current. The properties of the electrolyte pre-determine how fast the battery can deliver power or absorb charge (power density), and how long the battery can last (electrochemical stability).

One of the two factors must be met to achieve stability, the team concluded. Electrolytes must be either "thermodynamically stable with electrodes, or form a stable passivation layer that should be electronically insulating but ionically conducting while accommodating mechanical stresses due to electrode volume changes during battery cycling", Borodin said.

Thermodynamic stability happens when a system is in its lowest energy state, or chemical equilibrium, with its environment. While thermodynamic stability is highly desired and most ideal, it can rarely be achieved in reality, and passivation is often the approach to stability, which builds up a kinetic barrier and place the system in a meta-stable equilibrium with its environment.

Xu, an ARL fellow, specializes as a scientist of electrolytes.

"The Li-ion battery operates under the principle of this meta-stability", he said.

In recent years, the team led by Xu and Borodin has produced many electrolyte and battery innovations, which includes a new class of high-voltage aqueous electrolytes in collaboration with Prof. Chunsheng Wang, professor of Chemical and Biomolecular Engineering at the University of Maryland's A. James Clark School of Engineering.

Earlier this year, the laboratory honored Borodin, Cresce and Xu with the ARL Award of Science for their work on 4-volt aqueous Li-ion Batteries.

"The highly complementary collaboration between Borodin and myself is an excellent example for the collaboration between computation and experimental scientists," Xu said.

Conclusion

"We demonstrate that depending on their chemical structures, the anions could be designed to preferentially adsorb or desorb from the positive electrode with increasing electrode potential," Borodin concluded. "This provides additional leverage to dictate the order of anion oxidation and to effectively select a sacrificial anion for decomposition."
-end-
The U.S. Army Research Laboratory, currently celebrating 25 years of excellence in Army science and technology, is part of the U.S. Army Research, Development and Engineering Command, which has the mission to provide innovative research, development and engineering to produce capabilities that provide decisive overmatch to the Army against the complexities of the current and future operating environments in support of the joint warfighter and the nation. RDECOM is a major subordinate command of the U.S. Army Materiel Command.

U.S. Army Research Laboratory

Related Electrolyte Articles from Brightsurf:

Anions matter
Metal-ion hybrid capacitors combine the properties of capacitors and batteries.

AI technology can predict vanadium flow battery performance and cost
A research team led by Prof. LI Xianfeng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences proposed a machine learning-based strategy to predict and optimize the performance and cost of vanadium flow batteries (VFBs).

Scientists identify solid electrolyte materials that boost lithium-ion battery performance
The discovery could help battery researchers design the first solid electrolytes that are safe, cheap and efficient.

New understanding of electrolyte additives will improve dye-sensitised solar cells
Dye-sensitised solar cells could perform better thanks to improved understanding of additives in optimising electrolytes.

Manganese single-atom catalyst boosts performance of electrochemical CO2 Reduction
A research team led by Prof. ZHANG Suojiang from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences prepared a manganese (Mn) single-atom catalyst (SAC) with Mn-N3 site supported by graphitic C3N4, which exhibited efficient performance of CO2 electroreduction.

Scientists develop low-temperature resisting aqueous zinc-based batteries
A research group led by Prof. LI Xianfeng from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) developed a low-temperature resisting, cost-effective, safe and eco-friendly hybrid electrolyte for aqueous zinc-based batteries.

New battery electrolyte developed at Stanford may boost the performance of electric vehicles
Stanford researchers have designed a new electrolyte for lithium metal batteries that could increase the driving range of electric cars.

Simple is best? Simple and universal design for fuel cell electrolyte
Researchers at Japan Advanced Institute of Science and Technology (JAIST) and Dalian Institute of Chemical Physics, Chinese Academy of Sciences have successfully established a universal synthetic design using porous organic polymers (POPs) for fuel cell electrolyte, according to an Editor's choice hot article published in the journal Materials Chemistry Frontiers.

Researchers make next-generation, high-toughness battery component
By combining a ceramic material with graphene, Brown University engineers have made what they say is the toughest solid electrolyte built to date.

Lightning in a (nano)bottle: new supercapacitor opens door to better wearable electronics
Researchers from Skoltech, Aalto University and Massachusetts Institute of Technology have designed a high-performance, low-cost, environmentally friendly, and stretchable supercapacitor that can potentially be used in wearable electronics

Read More: Electrolyte News and Electrolyte Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.