Gravitational waves could shed light on the origin of black holes

November 30, 2017

PROVIDENCE, R.I. [Brown University] -- A new study published in Physical Review Letters outlines how scientists could use gravitational wave experiments to test the existence of primordial black holes, gravity wells formed just moments after the Big Bang that some scientists have posited could be an explanation for dark matter.

"We know very well that black holes can be formed by the collapse of large stars, or as we have seen recently, the merger of two neutron stars," said Savvas Koushiappas, an associate professor of physics at Brown University and coauthor of the study with Avi Loeb from Harvard University. "But it's been hypothesized that there could be black holes that formed in the very early universe before stars existed at all. That's what we're addressing with this work."

The idea is that shortly after the Big Bang, quantum mechanical fluctuations led to the density distribution of matter that we observe today in the expanding universe. It's been suggested that some of those density fluctuations might have been large enough to result in black holes peppered throughout the universe. These so-called primordial black holes were first proposed in the early 1970s by Stephen Hawking and collaborators but have never been detected -- it's still not clear if they exist at all.

The ability to detect gravitational waves, as demonstrated recently by the Laser Interferometer Gravitational-Wave Observatory (LIGO), has the potential to shed new light on the issue. Such experiments detect ripples in the fabric of spacetime associated with giant astronomical events like the collision of two black holes. LIGO has already detected several black hole mergers, and future experiments will be able to detect events that happened much further back in time.

"The idea is very simple," Koushiappas said. "With future gravitational wave experiments, we'll be able to look back to a time before the formation of the first stars. So if we see black hole merger events before stars existed, then we'll know that those black holes are not of stellar origin."

Cosmologists measure how far back in time an event occurred using redshift -- the stretching of the wavelength of light associated with the expansion of the universe. Events further back in time are associated with larger redshifts. For this study, Koushiappas and Loeb calculated the redshift at which black hole mergers should no longer be detected assuming only stellar origin.

They show that at a redshift of 40, which equates to about 65 million years after the Big Bang, merger events should be detected at a rate of no more than one per year, assuming stellar origin. At redshifts greater than 40, events should disappear altogether.

"That's really the drop-dead point," Koushiappas said. "In reality, we expect merger events to stop well before that point, but a redshift of 40 or so is the absolute hardest bound or cutoff point."

A redshift of 40 should be within reach of several proposed gravitational wave experiments. And if they detect merger events beyond that, it means one of two things, Koushiappas and Loeb say: Either primordial black holes exist, or the early universe evolved in a way that's very different from the standard cosmological model. Either would be very important discoveries, the researchers say.

For example, primordial black holes fall into a category of entities known as MACHOs, or Massive Compact Halo Objects. Some scientists have proposed that dark matter -- the unseen stuff that is thought to comprise most of the mass of the universe -- may be made of MACHOs in the form of primordial black holes. A detection of primordial black holes would bolster that idea, while a non-detection would cast doubt upon it.

The only other possible explanation for black hole mergers at redshifts greater than 40 is that the universe is "non-Gaussian." In the standard cosmological model, matter fluctuations in the early universe are described by a Gaussian probability distribution. A merger detection could mean matter fluctuations deviate from a Gaussian distribution.

"Evidence for non-Gaussianity would require new physics to explain the origin of these fluctuations, which would be a big deal," Loeb said.

The rate at which detections are made past a redshift of 40 -- if indeed such detections are made -- should indicate whether they're a sign of primordial black holes or evidence for non-Gaussianity. But a non-detection would present a strong challenge to those ideas.

Brown University

Related Black Holes Articles from Brightsurf:

The black hole always chirps twice: New clues deciphering the shape of black holes
A team of gravitational-wave scientists led by the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) reveal that when two black holes collide and merge, the remnant black hole 'chirps' not once, but multiple times, emitting gravitational waves--intense ripples in the fabric space and time--that inform us about its shape.

Black holes? They are like a hologram
Spherical, smooth and simple according to the theory of relativity, or extremely complex and full of information as, according to quantum laws, Stephen Hawking used to say?

Under pressure, black holes feast
A new, Yale-led study shows that some supermassive black holes actually thrive under pressure.

Staining cycles with black holes
In the treatment of tumors, microenvironment plays an important role.

Black holes sometimes behave like conventional quantum systems
A group of Skoltech researchers led by Professor Anatoly Dymarsky have studied the emergence of generalized thermal ensembles in quantum systems with additional symmetries.

Scientists may have discovered whole new class of black holes
New research shows that astronomers' search for black holes might have been missing an entire class of black holes that they didn't know existed.

Are black holes made of dark energy?
Two University of Hawaii at Manoa researchers have identified and corrected a subtle error that was made when applying Einstein's equations to model the growth of the universe.

Telescopes in space for even sharper images of black holes
Astronomers have just managed to take the first image of a black hole, and now the next challenge facing them is how to take even sharper images, so that Einstein's Theory of General Relativity can be tested.

Can entangled qubits be used to probe black holes?
Information escapes from black holes via Hawking radiation, so it should be possible to capture it and use it to reconstruct what fell in: if given time longer than the age of the universe.

How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.

Read More: Black Holes News and Black Holes Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to