Nav: Home

Virtual reality could serve as powerful environmental education tool

November 30, 2018

Utter the words "ocean acidification" in mixed company, and you'll probably get blank stares. Although climate change has grown steadily in the public consciousness, one of its most insidious impacts - a widespread die-off of marine ecosystems driven by carbon dioxide emissions - remains relatively unknown.

Enter virtual reality. In a new study, published Nov. 30 in Frontiers in Psychology, researchers at Stanford and the University of Oregon discovered that VR can be a powerful tool for improving environmental learning gains and attitudes. The researchers found that experiencing a simulation of ocean acidification's effects spurred meaningful gains in people's understanding of the issue.

"I believe virtual reality is a powerful tool that can help the environment in so many ways," said study co-author Jeremy Bailenson, the Thomas More Storke Professor of Communication. "Changing the right minds can have a huge impact."

New gear, wider reach

With the advent of affordable consumer-grade gear from companies such as Oculus Rift, Samsung and Microsoft, potential audiences for VR are expanding far beyond Stanford's multimillion-dollar Virtual Human Interaction Lab.

Working with co-author Roy Pea, the David Jacks Professor of Education and director of Stanford's Human-Sciences and Technologies Advanced Research Institute, Bailenson and his team brought the Stanford Ocean Acidification Experience to more than 270 high school students, college students and adults.

In one such test, high school seniors in a marine biology class at Sacred Heart Preparatory in Atherton, California, took on new virtual identities in the simulation (which is free to download). Each became a pink coral on a rocky underwater reef throbbing with urchins, bream, snails and other creatures.

By the end of the simulation - which fast-forwards to what the reef will look like at the end of this century - those brilliantly varied and colorful species have disappeared. They are replaced by slimy green algae and the silver Salema Porgy - a fish that will likely thrive in more acidic waters. The simulation is based on the work of Fiorenza Micheli, the David and Lucile Packard Professor of Marine Science at Stanford.

Eventually, the viewer's virtual coral skeleton disintegrates. "If ocean acidification continues, ecosystems like your rocky reef, a world that was once full of biological diversity, will become a world of weeds," the narration intones.

Connected to the environment

The simulation was effective at making users feel a connection with their bodies, according to researchers who tracked the students' movements. Some of the students swiveled their heads and twisted their bodies during the simulation.

"It's pretty cool, pretty responsive," said 18-year-old Cameron Chapman. "I definitely felt like I was underwater."

"It was way more realistic than I expected," said fellow high school senior Alexa Levison. "I'm a visual learner. Seeing ocean acidification happen is different than just hearing about it."

After the experience, the Sacred Heart students' scores on questions about ocean acidification causes and mechanisms increased by almost 150 percent and they retained that knowledge when tested several weeks later. In all of the study's in-school experiments, participants demonstrated increasing knowledge about ocean acidification as their time in the VR learning environment grew longer.

"Across age groups, learning settings and learning content, people understand the processes and effect of ocean acidification after a short immersive VR experience," said study lead author David Markowitz, a graduate student at the time of the research, now an assistant professor at the University of Oregon.

Increasing motivation

"We don't know whether a VR experience results in more learning compared to the same materials presented in other media," Bailenson said. "What we do know is that it increases motivation - people are thrilled to do it, much more so than opening a textbook - and because of the richness of the data recorded by the VR system, you can tweak the learning materials in real time based on how well someone is learning."

Bailenson is taking his VR experience beyond the classroom. He has been sending researchers with VR headsets to flea markets and libraries to show the ocean acidification experience. Also, it is part of a permanent virtual reality exhibition at the Tech Museum of Innovation in San Jose, California. He is also collaborating with companies to incorporate environment-themed VR into video games.

Although Bailenson is becoming more confident in the generalizability of the work, he acknowledges the need for replications to test how robust it is and to determine how long the effects endure. Questions remain about the effects of repeated VR exposure and how they persist over time. Research has yet to incorporate a broad demographic sample that spans variables such as age, income and education.

Despite these unknowns, co-author Brian Perone, a graduate student at the time of the research, said he is optimistic about the value of VR in education. "When done right, these experiences can feel real, and can give learners a lasting sense of connectedness," he said.
-end-
Bailenson is also a senior fellow at the Stanford Woods Institute for the Environment. Micheli is also co-director of the Stanford Center for Ocean Solutions and a senior fellow at the Stanford Woods Institute for the Environment. Co-authors also include Rob Laha, a postdoctoral scholar at the time of research.

Funding for this research was provided by the Gordon and Betty Moore Foundation.

Stanford University

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".