Nav: Home

Switch for the regeneration of nerve cell insulation

November 30, 2018

An international research team has discovered a mechanism that regulates the regeneration of the insulating layer of neurites. This insulation coating, also referred to as myelin sheath, is crucial for rapid signal transmission among cells. Damages to the myelin sheath, such as are caused by multiple sclerosis, can considerably inhibit the function of the nervous system. In the journal "Glia", the team headed by Dr. Annika Ulc, Dr. Simon van Leeuwen and Professor Andreas Faissner from Ruhr-Universität Bochum describes their findings together with colleagues from Edinburgh, Münster and Hanover. The article was published online on 18 November 2018.

"We hope we've identified a potential approach for accelerating myelin repair with pharmacological means," says Andreas Faissner, Head of the Department of Cell Morphology and Molecular Neurobiology in Bochum.

Complex manufacturing mechanism

The myelin sheath is formed by specific cells, namely oligodendrocytes. "In order for the insulation layer to be generated, the cell shape and its membrane extensions require complex changes," explains Faissner. In their current project, the research team analysed molecular switches that regulate the shape of the cell. To this end, the Bochum-based group collaborated with the Centre for Regenerative Medicine, University of Edinburgh, the Institute of Neuropathology at the university clinic in Münster, and the Department of Cellular Neurophysiology at Hanover Medical School.

Slower regeneration without exchange factor Vav3

In their study, the researchers demonstrated the significance of the Vav3 signalling molecule. It regulates the activity of other molecules, which act as molecular switches by activating and deactivating certain signalling processes. The researchers showed that the activity of molecular switches was altered in oligodendrocytes that lack the Vav3 exchange factor. Moreover, they analysed in what way a missing Vav3 affected the regeneration of the myelin sheath in cultivated cells whose insulation layer had been damaged. The result: without Vav3, the new myelin layer formed more slowly than in cell cultures with Vav3. These findings were confirmed in experiments on mice that lacked Vav3 and that likewise presented slower myelin regeneration.

The signalling mechanisms of molecular switches of the RhoA type, which were under scrutiny here, have been fairly comprehensively investigated. "Combined with our understanding of how important the Vav3 exchange factor is, it might be possible in future to control the molecular switches in such a way as to accelerate the regeneration of the myelin sheath," concludes Faissner.
-end-


Ruhr-University Bochum

Related Multiple Sclerosis Articles:

New biomarkers of multiple sclerosis pathogenesis
Multiple sclerosis (MS) is a chronic debilitating inflammatory disease targeting the brain.
Using telemedicine to treat multiple sclerosis
Multiple sclerosis (MS) clinicians face continued challenges in optimizing neurological care, especially for people with advanced MS living in medically underserved communities.
Improving symptom tracking in multiple sclerosis
With a recent two-year, $833,000 grant from the US Department of Defense, kinesiology professor Richard van Emmerik and colleagues at the University of Massachusetts Amherst hope to eventually help an estimated 1 million people worldwide living with progressive multiple sclerosis by creating an improved diagnostic test for this form of the disease, which is characterized by a steady decrease in nervous system function.
An antibody-based drug for multiple sclerosis
Inserm Unit U919, directed by Professor Denis Vivien has developed an antibody with potential therapeutic effects against multiple sclerosis.
Four new risk genes associated with multiple sclerosis discovered
Scientists of the Technical University of Munich and the Max Planck Institute of Psychiatry have identified four new risk genes that are altered in German patients with multiple sclerosis.
PET detects neuroinflammation in multiple sclerosis
The triggers of autoimmune inflammation in multiple sclerosis (MS) have eluded scientists for many years, but molecular imaging is bringing researchers closer to identifying them, while providing a means of evaluating next-generation therapies for MS, say researchers introducing a study at the 2016 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging.
Scientists find genetic cause of multiple sclerosis
Researchers have discovered a rare genetic mutation that makes it probable that a person will develop multiple sclerosis (MS).
ANKRD55: A new gene involved in Multiple Sclerosis is discovered
The Ikerbasque researcher Koen Vandenbroeck, who heads the Neurogenomiks laboratory which reports to the Achucarro centre and the UPV/EHU-University of the Basque Country, together with other national and international groups, has shown that a genetic variant in the 5q11 chromosome, which is associated with susceptibility to developing multiple sclerosis, greatly regulates a gene known as ANKRD55.
Children with and without multiple sclerosis have differences in gut bacteria
In a recent study, children with multiple sclerosis had differences in the abundance of specific gut bacteria than children without the disease.
Rituximab is superior to fingolimod for certain patients with multiple sclerosis
A new study indicates that rituximab is more effective than fingolimod for preventing relapses in patients with highly active multiple sclerosis switching from treatment with natalizumab.

Related Multiple Sclerosis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...