Nav: Home

UA scientist identifies cellular gene signatures for heart muscle regeneration

November 30, 2018

TUCSON, Ariz. - Repairing heart muscle damaged by a heart attack or other cardiovascular diseases is one of the "holy grails" for cardiovascular scientists. The ability to repair heart muscle - especially by using a person's own cells - would be a significant advance that could enhance quality of life for the millions of people who suffer from a heart attack or have a chronic heart condition.

Researchers believe that human-induced pluripotent stem cells (hiPSC) are the key to unlocking this regenerative ability. By taking a tiny bit of blood, scientists can generate an individual's patient specific stem cells and then convert them into any cell type in the body -- including cardiomyocytes, the cells that make up the heart muscle. The research, however, is in its infancy and the technique is not yet ready to be deployed for human heart disease regenerative purposes.

Now, researchers at the University of Arizona are one step closer to understanding hiPSC cardiomyocytes and how they may better be utilized to repair heart muscles. In a study published this month in Nature Communications, Jared Churko, PhD, assistant professor of Cellular and Molecular Medicine at the UA College of Medicine - Tucson, used a systems-based approach encompassing single-cell transcriptomics, single-cell proteomics and CRISPR gene-editing to identify different subpopulations of cardiomyocytes.

Definitions:
  • Transcriptomics is the study of the transcriptome - quantification of the types of RNA produced within the cell.

  • Proteomics is the study of proteomes, the proteins expressed by a cell, tissue or organism.

  • CRISPR gene editing is a technology for modifying an organism's DNA code at the single-cell level. This has the potential to correct cells that are known to cause a heart condition.

The research reveals multiple subpopulations of cardiomyocytes expressing specific transcription factors (NR2F2, TBX5 and HEY2) -- with different spatial and biological functions as observed in the heart. Dr. Churko believes this new understanding of cardiomyocytes can be used to better repair heart muscle injuries in the future.

"Understanding the gene signatures of different populations of hiPSC-CMs will impact our understanding of how to use such cells to discover drugs, model heart disease and repair a damaged heart," Dr. Churko explained.

Dr. Churko's research team included scientists from Stanford University and the Cincinnati Children's Hospital Medical Center. Dr. Churko is associated with the Center for Innovation in Brain Science, an assistant professor of physiological sciences and genetics in the Graduate Interdisciplinary Programs, member of the Center for Applied Genetics and Genomic Medicine and the UA BIO5 Institute and director of the UA iPSC Core in the UA Sarver Heart Center.
-end-
The Nature Communications article is titled, "Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis." Co-authors include Priyanka Garg, Haodi Lee, Jaecheol Lee, Quinton Wessells, Wen-Yi Chen, and Arun Sharma from Stanford Cardiovascular Institute. Other Stanford co-authors are Barbara Treutlein, Shih-Yu Chen, Gary Mantalas, Norma Neff, Garry Nolan and Eric Jabart. Dr. Churko received funding from Canadian Institute of Health Research (201210MFE-289547), National Institutes of Health (1K99HL128906), and NIH Progenitor Cell Biology Consortium (PCBC_JS_2013/3_03). Joseph Wu, MD, PhD, Stanford University, received funding from NIH R01 HL126527, NIH R01 HL141371, NIH R01 HL130020, NIH R01 HL123968 and NIH HL128170.

Heart Disease Facts

Each year in the United States:
  • About 610,000 people die of heart disease; that's about 1 in 4 deaths.

  • About 735,000 people have a heart attack.

  • Coronary heart disease causes about 370,000 deaths.

  • About 5.7 million adults have heart failure.

    Source: U.S. Centers for Disease Control and Prevention

The University of Arizona Sarver Heart Center's 150 members include faculty from cardiology, cardiothoracic surgery, pediatric cardiology, neurology, vascular surgery, radiology, endocrinology, emergency medicine, nursing, pharmacy and basic sciences. The UA Sarver Heart Center emphasizes a highly collaborative research environment, fostering innovative translational or "bench-to-bedside" research; dedicated to innovating lifesaving patient care. If you would like to give permission for Sarver Heart Center to contact you about heart research studies, please complete a Cardiology Research Registry Information Form. The academic mission of the Sarver Heart Center encompasses for fellowship programs in cardiovascular disease, interventional cardiology, advanced heart failure and transplant cardiology, and electrophysiology.

University of Arizona Health Sciences

Related Heart Attack Articles:

Where you live could determine risk of heart attack, stroke or dying of heart disease
People living in parts of Ontario with better access to preventive health care had lower rates of cardiac events compared to residents of regions with less access, found a new study published in CMAJ (Canadian Medical Association Journal).
Activated T-cells drive post-heart attack heart failure
Chronic inflammation after a heart attack can promote heart failure and death.
ICU care for COPD, heart failure and heart attack may not be better
Does a stay in the intensive care unit give patients a better chance of surviving a chronic obstructive pulmonary disease (COPD) or heart failure flare-up or even a heart attack, compared with care in another type of hospital unit?
Heart attack treatment might be in your face
Researchers at the University of Cincinnati have received $2.4 million in federal funding to pursue research on a novel cell therapy that would repair heart damage using modified cells taken from the patient's own facial muscle.
Tissue engineering advance reduces heart failure in model of heart attack
Researchers have grown heart tissue by seeding a mix of human cells onto a 1-micron-resolution scaffold made with a 3-D printer.
Study shows functional effects of human stem cell delivery to heart muscle after heart attack
Researchers delivered human stem cells seeded in biological sutures to the damaged heart muscles of rats following induced acute myocardial infarction and assessed the effects on cardiac function one week later.
Younger heart attack survivors may face premature heart disease death
For patients age 50 and younger, the risk of premature death after a heart attack has dropped significantly, but their risk is still almost twice as high when compared to the general population, largely due to heart disease and other smoking-related diseases The risk of heart attack can be greatly reduced by quitting smoking, exercising and following a healthy diet.
After the heart attack: Injectable gels could prevent future heart failure (video)
During a heart attack, clots or narrowed arteries block blood flow, harming or killing cells in the heart.
Heart failure after first heart attack may increase cancer risk
People who develop heart failure after their first heart attack have a greater risk of developing cancer when compared to first-time heart attack survivors without heart failure, according to a study today in the Journal of the American College of Cardiology.
1 in 4 patients develop heart failure within 4 years of first heart attack
One in four patients develop heart failure within four years of a first heart attack, according to a study in nearly 25,000 patients presented today at Heart Failure 2016 and the 3rd World Congress on Acute Heart Failure by Dr.

Related Heart Attack Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".