UA scientist identifies cellular gene signatures for heart muscle regeneration

November 30, 2018

TUCSON, Ariz. - Repairing heart muscle damaged by a heart attack or other cardiovascular diseases is one of the "holy grails" for cardiovascular scientists. The ability to repair heart muscle - especially by using a person's own cells - would be a significant advance that could enhance quality of life for the millions of people who suffer from a heart attack or have a chronic heart condition.

Researchers believe that human-induced pluripotent stem cells (hiPSC) are the key to unlocking this regenerative ability. By taking a tiny bit of blood, scientists can generate an individual's patient specific stem cells and then convert them into any cell type in the body -- including cardiomyocytes, the cells that make up the heart muscle. The research, however, is in its infancy and the technique is not yet ready to be deployed for human heart disease regenerative purposes.

Now, researchers at the University of Arizona are one step closer to understanding hiPSC cardiomyocytes and how they may better be utilized to repair heart muscles. In a study published this month in Nature Communications, Jared Churko, PhD, assistant professor of Cellular and Molecular Medicine at the UA College of Medicine - Tucson, used a systems-based approach encompassing single-cell transcriptomics, single-cell proteomics and CRISPR gene-editing to identify different subpopulations of cardiomyocytes.

Definitions: The research reveals multiple subpopulations of cardiomyocytes expressing specific transcription factors (NR2F2, TBX5 and HEY2) -- with different spatial and biological functions as observed in the heart. Dr. Churko believes this new understanding of cardiomyocytes can be used to better repair heart muscle injuries in the future.

"Understanding the gene signatures of different populations of hiPSC-CMs will impact our understanding of how to use such cells to discover drugs, model heart disease and repair a damaged heart," Dr. Churko explained.

Dr. Churko's research team included scientists from Stanford University and the Cincinnati Children's Hospital Medical Center. Dr. Churko is associated with the Center for Innovation in Brain Science, an assistant professor of physiological sciences and genetics in the Graduate Interdisciplinary Programs, member of the Center for Applied Genetics and Genomic Medicine and the UA BIO5 Institute and director of the UA iPSC Core in the UA Sarver Heart Center.
-end-
The Nature Communications article is titled, "Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis." Co-authors include Priyanka Garg, Haodi Lee, Jaecheol Lee, Quinton Wessells, Wen-Yi Chen, and Arun Sharma from Stanford Cardiovascular Institute. Other Stanford co-authors are Barbara Treutlein, Shih-Yu Chen, Gary Mantalas, Norma Neff, Garry Nolan and Eric Jabart. Dr. Churko received funding from Canadian Institute of Health Research (201210MFE-289547), National Institutes of Health (1K99HL128906), and NIH Progenitor Cell Biology Consortium (PCBC_JS_2013/3_03). Joseph Wu, MD, PhD, Stanford University, received funding from NIH R01 HL126527, NIH R01 HL141371, NIH R01 HL130020, NIH R01 HL123968 and NIH HL128170.

Heart Disease Facts

Each year in the United States: The University of Arizona Sarver Heart Center's 150 members include faculty from cardiology, cardiothoracic surgery, pediatric cardiology, neurology, vascular surgery, radiology, endocrinology, emergency medicine, nursing, pharmacy and basic sciences. The UA Sarver Heart Center emphasizes a highly collaborative research environment, fostering innovative translational or "bench-to-bedside" research; dedicated to innovating lifesaving patient care. If you would like to give permission for Sarver Heart Center to contact you about heart research studies, please complete a Cardiology Research Registry Information Form. The academic mission of the Sarver Heart Center encompasses for fellowship programs in cardiovascular disease, interventional cardiology, advanced heart failure and transplant cardiology, and electrophysiology.

University of Arizona Health Sciences

Related Heart Attack Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Molecular imaging identifies link between heart and kidney inflammation after heart attack
Whole body positron emission tomography (PET) has, for the first time, illustrated the existence of inter-organ communication between the heart and kidneys via the immune system following acute myocardial infarction.

Muscle protein abundant in the heart plays key role in blood clotting during heart attack
A prevalent heart protein known as cardiac myosin, which is released into the body when a person suffers a heart attack, can cause blood to thicken or clot--worsening damage to heart tissue, a new study shows.

New target identified for repairing the heart after heart attack
An immune cell is shown for the first time to be involved in creating the scar that repairs the heart after damage.

Heart cells respond to heart attack and increase the chance of survival
The heart of humans and mice does not completely recover after a heart attack.

A simple method to improve heart-attack repair using stem cell-derived heart muscle cells
The heart cannot regenerate muscle after a heart attack, and this can lead to lethal heart failure.

Mount Sinai discovers placental stem cells that can regenerate heart after heart attack
Study identifies new stem cell type that can significantly improve cardiac function.

Fixing a broken heart: Exploring new ways to heal damage after a heart attack
The days immediately following a heart attack are critical for survivors' longevity and long-term healing of tissue.

Heart patch could limit muscle damage in heart attack aftermath
Guided by computer simulations, an international team of researchers has developed an adhesive patch that can provide support for damaged heart tissue, potentially reducing the stretching of heart muscle that's common after a heart attack.

How the heart sends an SOS signal to bone marrow cells after a heart attack
Exosomes are key to the SOS signal that the heart muscle sends out after a heart attack.

Read More: Heart Attack News and Heart Attack Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.