Nav: Home

Free, publicly available health data proves to be research gold mine

November 30, 2018

It's a popular question: What did you do over the summer? For Lubaba (Aurna) Khan, the summer of 2018 will be one she will never forget.

It started on a high note and ended on an even higher one. In June, Khan walked across the stage to accept her degree as a University of Calgary Bachelor of Health Sciences graduate. She received an O'Brien Centre Summer Studentships award, landing a research job with Dr. Pinaki Bose, PhD. Then, unexpectedly, she made a discovery that could help cancer patients throughout the world.

Khan spent the summer hunched over a computer interpreting free, publicly accessible health and genomics data. "Bioinformatics is the new frontier of medical science," says Khan. "I started my medical education as a biomedical student, looking at cells through a microscope, but looking at cancer biology with the assistance of a computer opens up a new way of thinking about research."

Khan was comparing the differences between genes found in cancer cells and those found in normal cells. Working under the guidance of Bose, Khan learned how to construct questions and hypotheses. It was a bumpy start.

"We wanted to find out how immune genes in cancer cells might be associated with immunotherapy response. There was nothing there, and we were disappointed," says Bose, who is an adjunct assistant professor in the departments of biochemistry and molecular biology, and oncology, and is a member of the Arnie Charbonneau Cancer Institute at the Cumming School of Medicine.

"We adjusted our focus, and discovered that another set of genes, those associated with the extracellular matrix, had a direct connection to how cancer patients respond to immunotherapy."

Immunotherapy has become a popular treatment for some cancers. It uses the body's own immune system to attack and kill cancer cells. The treatment is effective, but only for a select few, around 20 to 30 per cent of patients. There is not a clear understanding as to why some people respond better to immunotherapy than others.

The extracellular matrix may hold some of the answers; it grows within and around both healthy and cancerous cells.

"We found that genes associated with the extracellular matrix are overly produced in patients who do not respond to immunotherapy," says Bose, who is also the director of translational research for the Ohlson Research Initiative. "These genes are produced by cells surrounding the tumour, and they form a barrier which helps cancer cells evade detection by the immune system."

The UCalgary team shared the discovery with researchers at the University of Toronto who have validated the findings, now published in Nature Communications. "I was like, wow, I'm a student. I didn't realize how important this was until Dr. Bose pointed out how significant this discovery could be in cancer treatment. It kind of threw me off, but I was extremely excited at the same time," says Khan, who is a co-first author on the study.

The researchers looked more deeply at their findings and discovered a gene signature, which could lead to the development of a simple test that could help determine which patients would benefit from immunotherapy. The next step will be to prove the findings in a lab.

"Analyzing big data won't replace bench science, but it a great tool for hypothesis-building and leading to new insights," says Bose.

For Khan, this experience has changed the course of her future studies. She always planned to pursue a master's degree in public health, and now sees a future focused on data analysis rather than data collection.
-end-
Pinaki Bose's research is supported by Ohlson Research Initiative and the Charbonneau Cancer Institute.

University of Calgary

Related Cancer Cells Articles:

Cancer cells send signals boosting survival and drug resistance in other cancer cells
Researchers at University of California San Diego School of Medicine report that cancer cells appear to communicate to other cancer cells, activating an internal mechanism that boosts resistance to common chemotherapies and promotes tumor survival.
A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Single gene encourages growth of intestinal stem cells, supporting 'niche' cells -- and cancer
A gene previously identified as critical for tumor growth in many human cancers also maintains intestinal stem cells and encourages the growth of cells that support them, according to results of a study led by Johns Hopkins researchers.
Prostate cancer cells grow with malfunction of cholesterol control in cells
Advanced prostate cancer and high blood cholesterol have long been known to be connected, but it has been a chicken-or-egg problem.
Immune therapy scientists discover distinct cells that block cancer-fighting immune cells
Princess Margaret Cancer Centre scientists have discovered a distinct cell population in tumours that inhibits the body's immune response to fight cancer.
New system developed that can switch on immune cells to attack cancer cells
Researchers have developed an artificial structure that mimics the cell membrane, which can switch on immune cells to attack and destroy a designated target.
Hybrid immune cells in early-stage lung cancer spur anti-tumor T cells to action
Researchers have identified a unique subset of these cells that exhibit hybrid characteristics of two immune cell types -- neutrophils and antigen-presenting cells -- in samples from early-stage human lung cancers.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Sleep hormone helps breast cancer drug kill more cancer cells
Tiny bubbles filled with the sleep hormone melatonin can make breast cancer treatment more effective, which means people need a lower dose, giving them less severe side effects.
Breast cancer tumor-initiating cells use mTOR signaling to recruit suppressor cells to promote tumor
Baylor College of Medicine researchers report a new mechanism that helps cancer cells engage myeloid-derived suppressor cells.

Related Cancer Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...