Raman holography

November 30, 2020

Raman spectroscopy is widely used in analytical sciences to identify molecules via their structural fingerprint. In the biological context the Raman response provides a valuable label-free specific contrast that allows distinguishing different cellular and tissue contents. Unfortunately, spontaneous Raman scattering is very weak, over ten orders of magnitude weaker than fluorescence. Unsurprisingly, fluorescence microscopy is often the preferred choice for applications such as live cell imaging. Luckily, Raman can be enhanced dramatically on metal surfaces or in metallic nanogaps and this surface enhanced Raman scattering (SERS) can even overcome the fluorescence response. Nanometric SERS probes are thus promising candidates for biological sensing applications, preserving the intrinsic molecular specificity. Still, the effectiveness of SERS probes depends critically on the particle size, stability and brightness, and, so far, SERS-probe based imaging is rarely applied.

Now ICFO researchers Matz Liebel and Nicolas Pazos-Perez, working in the groups of ICREA professors Niek van Hulst (ICFO) and Ramon Alvarez-Puebla (Univ. Rovira i Virgili) have presented "holographic Raman microscopy". First, they synthesized plasmonic superclusters from small nanoparticle building blocks, to generate very strong electric fields in a restricted cluster size. These extremely bright SERS nanoprobes require very low illumination light exposure in the near-infrared, thus reducing potential photo-damage of live cells to a minimum, and allow wide-field Raman imaging. Second, they took advantage of the bright SERS probes to realize 3D holographic imaging, using the scheme for incoherent holographic microscopy developed by Liebel and team in a study in Science Advances (Link). Remarkably, the incoherent Raman scattering is made to "self-interfere" to achieve Raman holography for the first time.

Liebel and Pazos-Perez demonstrated Fourier transform Raman spectroscopy of the wide-field Raman images and were able to localize single-SERS-particles in 3D volumes from one single-shot. The authors then used these capabilities to identify and track single SERS nanoparticles inside living cells in three dimensions.

The results, published in Nature Nanotechnology represent an important step towards multiplexed single-shot three-dimensional concentration mapping in many different scenarios, including live cell and tissue interrogation and possibly anti-counterfeiting applications.
-end-


ICFO-The Institute of Photonic Sciences

Related Fluorescence Articles from Brightsurf:

Researchers combine photoacoustic and fluorescence imaging in tiny package
Researchers have demonstrated a new endoscope that uniquely combines photoacoustic and fluorescent imaging in a device about the thickness of a human hair.

Researchers propose strategy to evaluate tumor photothermal therapy in real-time
Researchers from USTC reported an ''intelligent'' strategy of using organic nanoparticles to evaluate photothermal therapy efficiency on tumor in real time.

Instantaneous color holography system for sensing fluorescence and white light
The National Institute of Information and Communications Technology (NICT), the Japan Science and Technology Agency (JST), Toin University of Yokohama, and Chiba University have succeeded in developing a color-multiplexed holography system by which 3D information of objects illuminated by a white-light lamp and self-luminous specimens are recorded as a single multicolor hologram by a specially designed and developed monochrome image sensor.

Faster processing makes cutting-edge fluorescence microscopy more accessible
Scientists at NIBIB have developed new image processing techniques for microscopes that can reduce post-processing time up to several thousand-fold.

Fluorescence bioimaging
Scientists can monitor biomolecular processes in live tissue by noninvasive optical methods, such as fluorescence imaging.

High-security identification that cannot be counterfeited
Researchers from University of Tsukuba have used the principles that underpin the whispering-gallery effect to create an unbeatable anti-counterfeiting system.

Cervical precancer identified by fluorescence, in a step toward bedside detection
Researchers developed a method using fluorescence to detect precancerous metabolic and physical changes in individual epithelial cells lining the cervix, and can visualize those changes at different depths of the epithelial tissue near the surface.

General descriptor sparks advancements in dye chemistry
SUTD collaborates with international researchers to move away from inefficient trial-and-error developments in dye chemistry and quantitatively design luminescent materials.

Novel 3D imaging technology makes fluorescence microscopy more efficient
A research team led by Dr Kevin Tsia from the University of Hong Kong (HKU), developed a new optical imaging technology -- Coded Light-sheet Array Microscopy (CLAM) -- which can perform 3D imaging at high speed, and is power efficient and gentle to preserve the living specimens during scanning at a level that is not achieved by existing technologies.

Light-sheet fluorescence imaging goes more parallelized
In pursuit of 3D visualization of cells and organisms with minimal invasiveness and high spatiotemporal resolution, researchers demonstrated a new form of light-sheet imaging, coined CLAM, which allows scan-free, parallelized 3D fluorescence imaging that results in an even slower rate of photobleaching than scanning light-sheet imaging, yet without sacrificing the image speed and resolution.

Read More: Fluorescence News and Fluorescence Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.