Plastic contaminants harm sea urchins

November 30, 2020

Plastics in the ocean can release chemicals that cause deformities in sea urchin larvae, new research shows.

Scientists soaked various plastic samples in seawater then removed the plastic and raised sea urchin embryos in the water.

The study, led by the University of Exeter, found that urchins developed a variety of abnormalities, including deformed skeletons and nervous systems.

These abnormalities were caused by chemicals embedded in the plastics leaching out into the water, rather than the plastics themselves.

The plastic-to-water ratio in the study would only be seen in severely polluted places, but the findings raise questions about the wider impact of plastic contaminants on marine life.

"We are learning more and more about how ingesting plastic affects marine animals," said Flora Rendell-Bhatti, of the Centre for Ecology and Conservation on Exeter's Penryn Campus in Cornwall.

"However, little is known about the effects of exposure to chemicals that leach into the water from plastic particles.

"This study provides evidence that contamination of the marine environment with plastic could have direct implications for the development of larvae, with potential impacts on wider ecosystems.

"Our work contributes to the growing evidence that we all need to help reduce the amount of plastic contamination released into our natural environment, to ensure healthy and productive ecosystems for future generations."

Dr Eva Jimenez-Guri, also of the Centre for Ecology and Conservation, added: "Many plastics are treated with chemicals for a variety of purposes, such as making them mouldable or flame retardant.

"If such plastics find their way to the oceans, these chemicals can leach out into the water.

"Plastics can also pick up and transport chemicals and other environmental contaminants, potentially spreading them through the oceans."

The study used pre-production "nurdles" (pellets from which most plastics are made) from a UK supplier, and also tested nurdles and "floating filters" (used in water treatment) found on beaches in Cornwall, UK.

For the tests, each plastic type was soaked in seawater for 72 hours, then the plastic was removed.

Analysis of the water showed all samples contained chemicals known to be detrimental to development of animals, including polycyclic aromatic hydrocarbons and polychlorinated biphenyls.

Water from the different kinds of plastic affected urchin development in slightly different ways, though all sample types led to deformity of skeletons and nervous systems, and caused problems with gastrulation (when embryos begin to take shape).

The study also raised urchin embryos in water that had contained "virgin" polyethylene particles that had not been treated with additive chemicals or collected any environmental pollutants.

These urchins developed normally, suggesting that abnormalities observed in other samples were caused by industrial additives and/or environmentally adsorbed contaminants - rather than the base plastics themselves.

Nurdles and floating filters are not waste products, so they are not deliberately discarded, but the study highlights the importance of preventing their accidental release.

The researchers say most plastics may have similar effects as those in the study, so the findings emphasise the importance of finding alternatives to replace harmful additives, and reducing overall marine plastic pollution.
-end-
The study team included the Stazione Zoologica Anton Dohrn (Naples, Italy) and the Institute of Oceanology at the Polish Academy of Sciences (Sopot, Poland).

It was funded by the European Union's Horizon 2020 programme and the Natural Environment Research Council.

The paper, published in the journal Environmental Pollution, is entitled: "Developmental toxicity of plastic leachates on the sea urchin Paracentrotus lividus."

University of Exeter

Related Plastics Articles from Brightsurf:

Bioplastics no safer than other plastics
Bioplastics contain substances that are as toxic as those in ordinary plastics.

A first-of-its-kind catalyst mimics natural processes to break down plastics
A team of scientists led by the U.S. Department of Energy's Ames Laboratory has developed a first-of-its-kind catalyst that is able to process polyolefin plastics, types of polymers widely used in things like plastic grocery bags, milk jugs, shampoo bottles, toys, and food containers.

Plastics, waste and recycling: It's not just a packaging problem
Discussions of the growing plastic waste problem often focus on reducing the volume of single-use plastic packaging items such as bags, bottles, tubs and films.

'Critical' questions over disease risks from ocean plastics
Key knowledge gaps exist in our understanding of how ocean microplastics transport bacteria and viruses -- and whether this affects the health of humans and animals, researchers say.

Plastics, pathogens and baby formula: What's in your shellfish?
The first landmark study using next-generation technology to comprehensively examine contaminants in oysters in Myanmar reveals alarming findings: the widespread presence of human bacterial pathogens and human-derived microdebris materials, including plastics, kerosene, paint, talc and milk supplement powders.

Chemists make tough plastics recyclable
MIT chemists have developed a way to modify thermoset plastics with a chemical linker that makes it much easier to recycle them, but still allows them to retain their mechanical strength.

The many lifetimes of plastics
Many of us have seen informational posters at parks or aquariums specifying how long plastics bags, bottles, and other products last in the environment.

Recycling plastics together, simple and fast
Scientists successfully blended different types of plastics to be recycled together, providing a solution to the environmental problem of plastic waste and adding economic value to plastic materials.

Water replaces toxins: Green production of plastics
A new way to synthesize polymers, called hydrothermal synthesis, can be used to produce important high-performance materials in a way which is much better for the environment.

Untwisting plastics for charging internet-of-things devices
Scientists are unraveling the properties of electricity-conducting plastics so they can be used in future energy-harvesting devices.

Read More: Plastics News and Plastics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.