A shapeshifting material based on inorganic matter

November 30, 2020

By embedding titanium-based sheets in water, a group led by scientists from the RIKEN Center for Emergent Matter Science has created a material using inorganic materials that can be converted from a hard gel to soft matter using temperature changes. Science fiction often features inorganic life forms, but in reality, organisms and devices that respond to stimuli such as temperature changes are nearly always based on organic materials, and hence, research in the area of "adaptive materials" has almost exclusively focused on organic substances. However, there are advantages to using inorganic materials such as metals, including potentially better mechanical properties. Considering this, the RIKEN-led group decided to attempt to recreate the behavior displayed by organic hydrogels, but using inorganic materials. The inspiration for the material comes from an aquatic creature called a sea cucumber. Sea cucumbers are fascinating animals, related to starfishes (but not to cucumbers!)--that have the ability to morph their skin from a hard layer to a kind of jelly, allowing them to throw out their internal organs--which are eventually regrown--to escape from predators. In the case of the sea cucumbers, chemicals released by their nervous systems trigger the change in the configuration of a protein scaffold, creating the change.

To make it, the researchers experimented with arranging nanosheets--thin sheets of titanium oxide in this case--in water, with the nanosheets making up 14 percent and water 86 percent of the material by weight.

According to Koki Sano of RIKEN CEMS, the first author of the paper, "The key to whether a material is a soft hydrogel or a harder gel is based on the balance between attractive and repulsive forces among the nanosheets. If the repulsive forces dominate, it is softer, but if the attractive ones are strong, the sheets become locked into a three-dimensional network, and it can rearrange into a harder gel. By using finely tuned electrostatic repulsion, we tried to make a gel whose properties would change depending on temperature."

The group was ultimately successful in doing this, finding that the material changed from a softer repulsion-dominated state to a harder attraction-dominated state at a temperature of around 55 centigrade. They also found that they could repeat the process repeatedly without significant deterioration. "What was fascinating," he continues, "is that this transition process is completed within just two seconds even though it requires a large structural rearrangement. This transition is accompanied by a 23-fold change in the mechanical elasticity of the gel, reminiscent of sea cucumbers."

To make the material more useful, they next doped it with gold nanoparticles that could convert light into heat, allowing them to shine laser light on the material to heat it up and change the structure.

According to Yasuhiro Ishida of RIKEN CEMS, one of the corresponding authors of the paper, "This is really exciting work as it greatly opens the scope of substance that can be used in next-generation adaptive materials, and may even allow us to create a form of 'inorganic life'."
-end-
The work, published in Nature Communications, was done by RIKEN CEMS in collaboration with the University of Tokyo, the National Institute for Materials Science (NIMS), and the RIKEN SPring-8 Center.

RIKEN

Related Water Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.

Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.

What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.

How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Read More: Water News and Water Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.