Research unlocks new information about reading through visual dictionary in the brain

November 30, 2020

The uniquely human ability to read is the cornerstone of modern civilization, yet very little is understood about the effortless ability to derive meaning from written words. Scientists at The University of Texas Health Science Center at Houston (UTHealth) have now identified a crucial region in the temporal lobe, know as the mid-fusiform cortex, which appears to act as the brain's visual dictionary. While reading, the ability of the human brain to distinguish between a real word such as "lemur" and a made-up word like "urmle" appears to lie in the way that region processes information.

These findings were published today in Nature Human Behavior.

"How much the mid-fusiform responds to a word and how quickly it can distinguish between a real and made-up word is highly dependent on how frequently the real word is encountered in everyday language," said Nitin Tandon, MD, senior author, professor and vice chair in the Vivian L. Smith Department of Neurosurgery at McGovern Medical School at UTHealth. "So short, common words like 'say' can be identified quickly but long, infrequent words like 'murmurings' take longer to be identified as real words."

For the study, Nitin Tandon and postdoctoral fellow Oscar Woolnough, PhD, the lead author, used recordings from patients who had electrodes temporarily placed in their brains while undergoing treatment for epilepsy. These recordings were then used to create a visual representation of the early neural processing of written words.

They found that this region, which has been overlooked in many previous studies of reading, compares incoming strings of letters encountered while reading with stored patterns of learned words. After words are identified in this area of the brain, this information is spread to other visual-processing regions of the brain.

"Since word frequency is one of the main factors that determines how fast people can read, it is likely that the mid-fusiform acts as the bottleneck to reading speed," Tandon said. "We showed that if we temporarily disrupt activity in the mid-fusiform cortex using briefly applied electrical pulses, it causes a temporary inability to read, a dyslexia, but doesn't disrupt other language functions like naming visual objects or understanding speech."

Tandon said the study serves to improve understanding of how people read and can help people with reading disorders such as dyslexia, the most common learning disability.
-end-
Tandon is co-director of the Texas Institute for Restorative Neurotechnologies at UTHealth, faculty in UTHealth Neurosciences and MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, and an attending physician at Memorial Hermann-Texas Medical Center. UTHealth co-authors were Patrick S. Rollo, research associate, and Kiefer J. Forseth, an MD/PhD student at MD Anderson UTHealth Graduate School.

Other co-authors were from the University of Bucharest, Romania; Universite Paris-Sud and Universite Paris-Saclay, France; Johns Hopkins Medical Center, Baltimore; Rice University, Houston; and College de France, Paris.

The study was funded by the National Institute of Neurological Disorders and Stroke and the National Institute on Deafness and Other Communication Disorders, part of the National Institutes of Health, via the BRAIN Initiative (grant NS098981).

University of Texas Health Science Center at Houston

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.