New tech can get oxygen, fuel from Mars's salty water

November 30, 2020

When it comes to water and Mars, there's good news and not-so-good news. The good news: there's water on Mars! The not-so-good news?

There's water on Mars.

The Red Planet is very cold; water that isn't frozen is almost certainly full of salt from the Martian soil, which lowers its freezing temperature.

You can't drink salty water, and the usual method using electricity (electrolysis) to break it down into oxygen (to breathe) and hydrogen (for fuel) requires removing the salt; a cumbersome, costly endeavor in a harsh, dangerous environment.

If oxygen and hydrogen could be directly coerced out of briny water, however, that brine electrolysis process would be much less complicated -- and less expensive.

Engineers at the McKelvey School of Engineering at Washington University in St. Louis have developed a system that does just that. Their research was published today in the Proceedings of the National Academy of Sciences (PNAS).

The research team, led by Vijay Ramani, the Roma B. and Raymond H. Wittcoff Distinguished University Professor in the Department of Energy, Environmental & Chemical Engineering, didn't simply validate its brine electrolysis system under typical terrestrial conditions; the system was examined in a simulated Martian atmosphere at -33 ?F (-36 ?C).

"Our Martian brine electrolyzer radically changes the logistical calculus of missions to Mars and beyond" said Ramani. "This technology is equally useful on Earth where it opens up the oceans as a viable oxygen and fuel source"

In the summer of 2008, NASA's Phoenix Mars Lander "touched and tasted" Martian water, vapors from melted ice dug up by the lander. Since then, the European Space Agency's Mars Express has discovered several underground ponds of water which remain in a liquid state thanks to the presence of magnesium perchlorate -- salt.

In order to live -- even temporarily -- on Mars, not to mention to return to Earth, astronauts will need to manufacture some of the necessities, including water and fuel, on the Red Planet. NASA's Perseverance rover is en-route to Mars now, carrying instruments that will use high-temperature electrolysis. However, the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) will be producing oxygen only, from the carbon dioxide in the air.

The system developed in Ramani's lab can produce 25 times more oxygen than MOXIE using the same amount of power. It also produces hydrogen, which could be used to fuel astronauts' trip home.

"Our novel brine electrolyzer incorporates a lead ruthenate pyrochlore anode developed by our team in conjunction with a platinum on carbon cathode" Ramani said. "These carefully designed components coupled with the optimal use of traditional electrochemical engineering principles has yielded this high performance."

The careful design and unique anode allow the system to function without the need for heating or purifying the water source.

"Paradoxically, the dissolved perchlorate in the water, so-called impurities, actually help in an environment like that of Mars," said Shrihari Sankarasubramanian, a research scientist in Ramani's group and joint first author of the paper.

"They prevent the water from freezing," he said, "and also improve the performance of the electrolyzer system by lowering the electrical resistance."

Typically, water electrolyzers use highly purified, deionized water, which adds to the cost of the system. A system that can work with "sub-optimal" or salty water, such as the technology demonstrated by Ramani's team, can significantly enhance the economic value proposition of water electrolyzers everywhere - even right here on planet Earth.

"Having demonstrated these electrolyzers under demanding Martian conditions, we intend to also deploy them under much milder conditions on Earth to utilize brackish or salt water feeds to produce hydrogen and oxygen, for example through seawater electrolysis," said Pralay Gayen, a postdoctoral research associate in Ramani's group and also a joint first author on this study.

Such applications could be useful in the defense realm, creating oxygen on demand in submarines, for example. It could also provide oxygen as we explore uncharted environments closer to home, in the deep sea.

The underlying technologies enabling the brine electrolyzer system are the subject of patent filing through the Office of Technology Management and are available for licensing from the university.
-end-


Washington University in St. Louis

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.