UIC researchers identify new process to produce ammonia with a much smaller carbon footprint

November 30, 2020

Ammonia is the second most commonly produced chemical in the world and an important component of most fertilizers, but current industrial processes to make ammonia produce several millions of tons of carbon dioxide-a potent greenhouse gas-each year.

Now, researchers led by Meenesh Singh, assistant professor of chemical engineering at the University of Illinois Chicago College of Engineering, describe a new process to produce ammonia with a potentially much lower carbon footprint. They report their findings in the journal ACS Catalysis.

Nitrogen gas is one of the components used to make ammonia, but because nitrogen bonds in nitrogen gas are very stable, a lot of energy is needed to break them so the nitrogen can bind to hydrogen to produce ammonia.

"Current methods to make ammonia from nitrogen are very energy-intensive and require the burning of fossil fuels to generate enormous amounts of heat, and this produces a lot of greenhouse gas as a byproduct," said Singh.

Singh and colleagues have developed a new method to produce ammonia that relies on the use of a mesh screen coated in copper - a catalyst that helps bind nitrogen to hydrogen to make ammonia. The electrification of the screen helps drive the reactions.

Pure nitrogen gas is pushed through the screen and then interacts with water, which provides the hydrogen. Even though Singh's process uses similar amounts of energy compared to the traditional process, it requires far less fossil fuels than traditional methods - just enough to electrify the screen. "The electricity can come from solar or wind energy, which would really make a huge difference in reducing greenhouse gas emissions," said Singh. "Even modern electricity-generating powerplants are highly efficient, and if the grid is powered conventionally, our process still uses less fossil fuels and generates less harmful greenhouse gases than conventional ammonia production."

Currently, Singh's process produces 20% ammonia and 80 percent hydrogen gas. "We are hoping to increase the production of ammonia, but our early efforts so far are promising, and the savings in the carbon emissions are still significant if you were to scale up our process to produce large amounts of ammonia," Singh said.

A provisional patent for the new process has been filed by the UIC Office of Technology Management.

Singh's group is now looking at using air - instead of purified nitrogen gas - as a source of nitrogen for producing ammonia using their unique method. "Using air would give us even more savings when it comes to greenhouse gases because we're using readily available air instead of nitrogen gas, which needs to be purified and bottled."
Nishithan C. Kani and Aditya Prajapati of the University of Illinois at Chicago and Brianna Collins and Jason Goodpaster of the University of Minnesota are co-authors on the paper.

University of Illinois at Chicago

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.