Surface of Mars as never seen before

November 30, 1999

ITHACA, N.Y. -- For just under two minutes, shortly before 3:14 p.m. Eastern Time on Friday, Dec. 3, a camera directed toward the south polar region of Mars will capture and store a series of about 20 images unique in the annals of planetary exploration: the surface of a planet (other than the moon) as seen from altitudes ranging from about 4 miles to only about 30 feet.

The camera, known as the Mars Descent Imager, or MARDI, will be positioned between the legs of the Mars Polar Lander, with the exhaust of the hydrazine engines in view. It will begin clicking its shutter after the lander vehicle's heat shield has been jettisoned -- about 6.5 kilometers (about 4 miles) above the surface -- and while the craft is still swinging on its parachute harness. The last few images -- perhaps eight -- will be captured after the parachute has been jettisoned at about the 1 kilometer (.62 mile) altitude and as the craft makes a controlled descent, slowed by retro rockets, to the frigid northern edge of the Martian south pole's layered terrain.

"MARDI's images will make all of us much more comfortable in making interpretations of the lander's pictures because they will give us a context," says Peter Thomas, a senior researcher with Cornell University's astronomy department. "For the first time we will have a complete scale of pictures of Mars, from less than a millimeter all the way up to orbiter pictures." The camera has a 70-degree field of view, and the estimated difference in resolution between the first and the last black-and-white images will be a factor of about 800.

Thomas is one of three Cornell researchers on the MARDI team, led by Michael Malin, president of Malin Space Science Systems, San Diego. Also participating in the development of the imaging system, and present at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, Calif., to interpret the images after they are received from the Mars Polar Lander, are Cornell astronomy professors Joseph Veverka, who also is chair of the Cornell astronomy department, and Steven Squyres. Also on the team are M.A. Caplinger of Malin Space Science and M.H. Carr of the U.S. Geological Survey in Flagstaff, Ariz. MARDI was developed under a $3.5 million JPL contract.

At present, the highest-resolution images of the Martian surface, taken from orbit, are made up of pixels (or picture elements) each covering 1 1/2 yards of terrain. That is about to change dramatically to images with each pixel covering a fraction of an inch of the surface.

The descent camera pictures will be used to interpret ground features and will aid in the mission's main purpose, studying the layers of ice and dust covering the polar region. These images will be captured with a "nesting" technique, meaning that each successive image will be nested within the previous picture. As the spacecraft loses altitude, each successive image will cover a smaller area within the previous larger image. The camera has no ability to aim, but simply points where the spacecraft points. "The first image will be several kilometers on one side, but the camera has a fairly wide angle so that even with the spacecraft swinging on a parachute, the images should remain nested within one another," says Thomas.

The nesting technique, he notes, will enable researchers to find a ground feature, such as a boulder, in the image taken closest to the ground, then work back to the largest picture. The spacecraft's electronic memory retains each image, plus details of when the image was taken, which direction the spacecraft was pointing at the time and its altitude. In this way, says Thomas, "you can take pictures and reconstruct them from that geometry."

The number of images returned to JPL will be limited by the storage capacity of the spacecraft's memory. For this reason, the on-board computer has been programmed both to reject some images taken by the camera and to write over others. The computer will be instructing the camera to capture images in different image formats (in terms of pixels) based both on altitude and the number of images already taken. If the computer determines that the altitude has not changed sufficiently, it will not save the image.

"If the memory's storage is full and the camera is still taking images, the computer is programmed to throw out some lower-resolution pictures," says Thomas. "We want to maintain nesting and protect the higher resolution images as we get really close to the surface. Those images closer to the surface are of platinum value."

The "overwhelming purpose" of the descent camera's images, says Thomas, is to tie what will be seen with the lander's camera on the surface of Mars with images taken a few feet from the surface. "We've seen the whole of Mars in 100-meter resolution, but only 1 percent of the surface in three-meter resolution. These images will be filling the gap."
-end-


Cornell University

Related Mars Articles from Brightsurf:

Water on ancient Mars
A meteorite that originated on Mars billions of years ago reveals details of ancient impact events on the red planet.

Surprise on Mars
NASA's InSight mission provides data from the surface of Mars.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.

What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.

Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.

Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.

Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.

New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.

Read More: Mars News and Mars Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.