UIC researchers create tissue-engineered joint from stem cells

December 01, 2003

Researchers at the University of Illinois at Chicago have successfully turned adult stem cells into bone and cartilage, forming the ball structure of a joint found in the human jaw with its characteristic shape and tissue composition.

Tested so far only in animals, the tissue-engineering procedure to create a human-shaped articular condyle could be used one day to regenerate the ball structure of joints in the jaw, knee and hip that have been lost to injury or diseases such as arthritis.

"This represents the first time a human-shaped articular condyle with both cartilage- and bone-like tissues was grown from a single population of adult stem cells," said Jeremy Mao, director of the tissue engineering laboratory at UIC and associate professor of bioengineering and orthodontics.

"Our ultimate goal is to create a condyle that is biologically viable -- a living tissue construct that integrates with existing bone and functions like the natural joint."

To create the articular condyle, Mao and Adel Alhadlaq, a doctoral student in anatomy and cell biology, used adult mesenchymal stem cells taken from the bone marrow of rats. Bone marrow is the inner, spongy tissue of long bones like the femur and tibia, the leg bones.

Under certain conditions, mesenchymal stem cells, present in a number of adult tissues, can potentially differentiate into virtually any kind of connective tissue -- including tendons, skeletal muscle, teeth, ligaments, cartilage and bone.

Using chemical substances and growth factors, the scientists induced the adult stem cells to develop into cells capable of producing cartilage and bone.

The cells were then stratified into two integrated layers, encapsulated in a biocompatible gel-like material, and shaped into an articular condyle using a mold made from the temporomandibular or jaw joint of a human cadaver.

After several weeks, Mao and his colleagues found that the tissue-engineered structures retained the molded shape of the human mandibular condyle, with bone-like tissue underneath and a layer of cartilage-like tissue on top -- an arrangement similar to that of a natural articular condyle.

Moreover, multiple tests confirmed that the newly grown tissues were indeed bone and cartilage, having the characteristic microscopic components: for bone, a matrix of collagen with deposits of calcium salts, and for cartilage, collagen and large amounts of substances called proteoglycans.

Mao stressed that much additional work is needed before tissue-engineered condyles are ready for therapeutic use in patients suffering from osteoarthritis, rheumatoid arthritis, injuries or congenital anomalies.

Nevertheless, he believes that with further refinements, the procedure could one day be adopted for total hip and knee replacements.

"Our findings represent a proof of concept for further development of tissue-engineered condyles," Mao said.

The first in a series of reports on the tissue-engineered articular condyle will be published as a rapid communication in the December issue of the Journal of Dental Research.
-end-
Mao's tissue engineering laboratory is funded by multiple grants from the National Institutes of Health and the Whitaker Foundation.

For more information about UIC, visit www.uic.edu.

University of Illinois at Chicago

Related Bone Marrow Articles from Brightsurf:

Researchers identify the mechanism behind bone marrow failure in Fanconi anaemia
Researchers at the University of Helsinki and the Dana-Farber Cancer Institute have identified the mechanism behind bone marrow failure developing in children that suffer from Fanconi anaemia.

Nanoparticles can turn off genes in bone marrow cells
Using specialized nanoparticles, MIT engineers have developed a way to turn off specific genes in cells of the bone marrow, which play an important role in producing blood cells.

How stress affects bone marrow
Researchers from Tokyo Medical and Dental University (TMDU) identified the protein CD86 as a novel marker of infection- and inflammation-induced hematopoietic responses.

3D atlas of the bone marrow -- in single cell resolution
Stem cells located in the bone marrow generate and control the production of blood and immune cells.

Dangerous bone marrow, organ transplant complication explained
Scientists have discovered the molecular mechanism behind how the common cytomegalovirus can wreak havoc on bone marrow and organ transplant patients, according to a paper published in the journal Cell & Host Microbe.

Viagra shows promise for use in bone marrow transplants
Researchers at UC Santa Cruz have demonstrated a new, rapid method to obtain donor stem cells for bone marrow transplants using a combination of Viagra and a second drug called Plerixafor.

Bone marrow may be the missing piece of the fertility puzzle
A woman's bone marrow may determine her ability to start and sustain a pregnancy, report Yale researchers in PLOS Biology.

Cells that make bone marrow also travel to the womb to help pregnancy
Bone marrow-derived cells play a role in changes to the mouse uterus before and during pregnancy, enabling implantation of the embryo and reducing pregnancy loss, according to research published Sept.

Uncovering secrets of bone marrow cells and how they differentiate
Researchers mapped distinct bone marrow niche populations and their differentiation paths for the bone marrow factory that starts from mesenchymal stromal cells and ends with three types of cells -- fat cells, bone-making cells and cartilage-making cells.

Zebrafish help researchers explore alternatives to bone marrow donation
UC San Diego researchers discover new role for epidermal growth factor receptor in blood stem cell development, a crucial key to being able to generate them in the laboratory, and circumvent the need for bone marrow donation.

Read More: Bone Marrow News and Bone Marrow Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.