New drug protects against the hardening of arteries

December 01, 2004

Atherosclerosis, a leading cause of morbidity and mortality in Western nations, is caused by the accumulation of cholesterol-rich lipoproteins that adhere to vessel walls and develop into macrophages. These macrophages, laden with lipid, cause inflammation in the vessel and, over time, formation of a lesion. A family of proteins known as PPARs (PPARalpha, PPARbeta, and PPARgamma) are expressed by cells of the artery wall and drugs that activate PPARalpha and PPARgamma (known as PPAR agonists) are used to treat high lipid levels (such as cholesterol and triglycerides), and type 2 diabetes, respectively. The presence of PPARs in the vessel wall has prompted researchers to investigate the effects of PPAR agonists on atherosclerosis in mice. While studies have shown that PPARgamma agonists are beneficial in the treatment of atherosclerosis in mice, the role of other members of this protein family have remained unclear.

In the December 1 issue of the Journal of Clinical Investigation, Andrew Li and colleagues from the University of California, San Diego compare the effects of PPARalpha, PPARbeta, and PPARgamma agonists on the development of atherosclerosis in a mouse model of this disease. They observed profound protective effects of the PPARalpha agonist GW7647, comparable to the PPARgamma agonist rosiglitazone that is currently used to treat type 2 diabetes. GW7647 also reduced weight gain, and insulin and lipoprotein levels. In contrast, lesion development was not inhibited by a PPARbeta agonist.

In an accompanying commentary, Peter Tontonoz and Antonio Castrillo from the University of California, Los Angeles discuss the mechanism described by Li and colleagues by which lipid accumulation is reduced by these agonists, thereby giving us a greater understanding of the roles of PPAR family members in atherosclerosis. Most importantly, the study highlights that the use of a drug (or drugs) that target multiple PPARs, particularly PPARalpha and PPARgamma, may be effective in limiting the accumulation of lipid in macrophages and subsequently reversing atherosclerosis.
-end-
TITLE: Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma

AUTHOR CONTACT:
Andrew C. Li or Christopher K. Glass
Department of Cellular and Molecular Medicine
University of California, San Diego, USA
Phone: 858-534-0575 or 858-524-0611
Fax: 858-822-2127 or 858-822-2127
E-mail: acli@ucsd.edu or cglass@ucsd.edu.

View the PDF of this article at: http://www.jci.org/cgi/content/full/114/11/1564

ACCOMPANYING COMMENTARY:

TITLE: PPARs in atherosclerosis: the clot thickens

AUTHOR CONTACT:
Peter Tontonoz
Howard Hughes Medical Institute
UCLA, Los Angeles, California, USA
Phone: 310-206-4546
Fax: 310-267-0382,br> E-mail: ptontonoz@mednet.ucla.edu.

JCI Journals

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.