Rolipram - a potential new treatment for Alzheimer disease

December 01, 2004

Alzheimer disease (AD) is the most common form of dementia in the elderly and classic clinical features include memory loss, deterioration in speech, and behavioral disturbances. Doctors increasingly concede that central to the cause of AD is the production and accumulation of beta-amyloid (Ab), which is toxic in the brain. There are only a few clinical therapeutic options for AD patients but in the December 1 issue of the Journal of Clinical Investigation, Ottavio Arancio, Michael Shelanksi, and colleagues from Columbia University, New York, propose a new treatment to counter AD-associated memory loss.

The authors show that brief treatment of a mouse model of AD with a phosphodiesterase 4 inhibitor, rolipram, improves memory in both long-term potential and contextual learning - both measurements of brain function.

Rolipram's protective effect is due to its ability to modify gene expression, making brain synapses more resistant to the insult caused by the accumulation of Ab. The beneficial effect of rolipram treatment was found to extend for at least 2 months after the end of one course of the treatment. The authors also found that the beneficial effects of treatment were not limited to early stages of the disease when behavioral changes were initially noted and were actually greater in older mice, suggesting that this class of drug might not be limited to treatment in the initial phases of disease.

Further studies will determine how long improvements in cognitive function persist after a single course of treatment and whether better or more long-lasting results can be achieved with either continuous treatment or successive courses of treatment. This study suggests that drugs, such as rolipram, the inhibit phosphodiesterase have the potential to prevent the memory loss characteristic of Alzheimer disease.
-end-
TITLE: Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment

AUTHOR CONTACT:
Ottavio Arancio or Michael Shelanski
Department of Pathology
Columbia University
New York, New York, USA
Phone: 212-342-5527 or 212-305-3300
Fax: 212-342-5524 or 212-305-5498
E-mail: oa1@columbia.edu or mls7@columbia.edu.

View the PDF of this article at: http://www.jci.org/cgi/content/full/114/11/1624

JCI Journals

Related Alzheimer Disease Articles from Brightsurf:

Potential link for Alzheimer's disease and common brain disease that mimics its symptoms
A new study by investigators from Brigham and Women's Hospital uncovered a group of closely related genes that may capture molecular links between Alzheimer's disease and Limbic-predominant Age-related TDP-43 Encephalopathy, or LATE, a recently recognized common brain disorder that can mimic Alzheimer's symptoms.

Uncovering Alzheimer's disease
Characterized by a buildup of amyloid plaques in the brain, Alzheimer's is an irreversible disease that leads to memory loss and a decrease in cognitive function.

Viewpoint: Could disease pathogens be the dark matter behind Alzheimer's disease?
In a lively discussion appearing in the Viewpoint section of the journal Nature Reviews Neurology, Ben Readhead, a researcher in the ASU-Banner Neurodegenerative Disease Research Center at the Biodesign Institute joins several distinguished colleagues to discuss the idea that bacteria, viruses or other infectious pathogens may play a role in Alzheimer's disease.

Coordination chemistry and Alzheimer's disease
It has become evident recently that the interactions between copper and amyloid-╬▓ neurotoxically impact the brain of patients with Alzheimer's disease.

How Alzheimer's disease spreads through the brain
Tau can quickly spread between neurons but is not immediately harmful, according to research in mouse neurons published in JNeurosci.

A protective factor against Alzheimer's disease?
Researchers at the German Center for Neurodegenerative Diseases (DZNE) and the Institute for Stroke and Dementia Research (ISD) at the University Hospital of the Ludwig-Maximilians-Universit├Ąt (LMU) in Munich have found that a protein called TREM2 could positively influence the course of Alzheimer's disease.

An alternate theory for what causes Alzheimer's disease
Alzheimer's disease, the most common cause of dementia among the elderly, is characterized by plaques and tangles in the brain, with most efforts at finding a cure focused on these abnormal structures.

Alzheimer's: How does the brain change over the course of the disease?
What changes in the brain are caused by Alzheimer's disease?

Possible pathway to new therapy for Alzheimer's disease
Researchers have uncovered an enzyme and a biochemical pathway they believe may lead to the identification of drugs that could inhibit the production of beta-amyloid protein, the toxic initiator of Alzheimer's disease (AD).

Promising novel treatment against Alzheimer disease
New research conducted at the Lady Davis Institute (LDI) at the Jewish General Hospital reveals that a novel drug reverses memory deficits and stops Alzheimer disease pathology (AD) in an animal model.

Read More: Alzheimer Disease News and Alzheimer Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.