Understanding how prostaglandin prevents gut injury during radiation therapy

December 01, 2004

People undergoing radiation therapy for diseases such as cancer run the risk of irreversibly damaging the cells of their intestine due to the radiation-induced death of cells within the gut. Previous studies have demonstrated that treatment of mice with protaglandin E2 (PGE2) is capable of inhibiting cell death in the intestine that occurs as a result of exposure to radiation.

In the December 1 issue of the Journal of Clinical Investigation, Teresa Tessner and colleagues from the Washington University School of Medicine pursued the mechanism by which PGE2 protects against radiation-induced injury in mice. They demonstrate that radiation-induced cell death can be dependent or independent of the bax protein, however the beneficial effect of PGE2 treatment is only achieved via a bax-dependent mechanism. Bax is normally expressed in the cell cytoplasm, however in response to radiation exposure, bax relocates to the mitochondrial membrane and trigger cell signaling events that lead to cell death. Administration of PGE2 to radiation-exposed mice was found to activate AKT phosphorylation events that block the relocation of bax within the cell, and therefore prevent cell death.

The data suggest that PGE2 or other drugs that increase AKP phosphorylation should reduce injury to the small intestine during radiation therapy. Conversely, cancers with mutations that inactivate bax and block its relocation to the mitochondria may be resistant to radiation therapy. This work may have significant clinical impact if the use of PGE2 could be shown to be effective for protection against radiation-induced gut injury in humans.
-end-
TITLE: Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation

AUTHOR CONTACT:
Teresa G. Tessner
Washington University School of Medicine
St. Louis, Missouri, USA
Phone: 314-362-8953
Fax: 314-362-9035
E-mail: stensnlb@im.wustl.edu.

View this article at: http://www.jci.org/cgi/content/full/114/11/1676

JCI Journals

Related Radiation Therapy Articles from Brightsurf:

Pulmonary artery thrombosis a complication of radiation therapy
According to ARRS' American Journal of Roentgenology, the imaging findings of in situ pulmonary artery thrombosis (PAT) associated with radiation therapy (RT) are different from those of acute pulmonary emboli and do not appear to embolize.

New approach for calculating radiation dosimetry allows for individualized therapy
Researchers have developed a simplified process that could enhance personalization of cancer therapy based on a single nuclear medicine scan.

Developing microbeam radiation therapy (MRT) for inoperable cancer
An innovative radiation treatment that could one day be a valuable addition to conventional radiation therapy for inoperable brain and spinal tumors is a step closer, thanks to new research led by University of Saskatchewan (USask) researchers at the Canadian Light Source (CLS).

Travel considerations specified for 177Lu-DOTATATE radiation therapy patients
Researchers and patient advocates have addressed the challenges related to traveling after receiving 177Lu-DOTATATE radiation therapy in a study published in the April issue of The Journal of Nuclear Medicine.

A new way to monitor cancer radiation therapy doses
More than half of all cancer patients undergo radiation therapy and the dose is critical.

AI can jump-start radiation therapy for cancer patients
Artificial intelligence can help cancer patients start their radiation therapy sooner -- and thereby decrease the odds of the cancer spreading -- by instantly translating complex clinical data into an optimal plan of attack.

Towards safer, more effective cancer radiation therapy using X-rays and nanoparticles
X-rays could be tuned to deliver a more effective punch that destroys cancer cells and not harm the body.

Radiation therapy effective against deadly heart rhythm
A single high dose of radiation aimed at the heart significantly reduces episodes of a potentially deadly rapid heart rhythm, according to results of a phase one/two study at Washington University School of Medicine in St.

New mathematical model can improve radiation therapy of brain tumours
Researchers have developed a new model to optimize radiation therapy and significantly increase the number of tumor cells killed during treatment.

Using artificial intelligence to deliver personalized radiation therapy
New Cleveland Clinic-led research shows that artificial intelligence (AI) can use medical scans and health records to personalize the dose of radiation therapy used to treat cancer patients.

Read More: Radiation Therapy News and Radiation Therapy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.