Vaccination with anthrax capsule protects against experimental infection in animals

December 01, 2004

Vaccination with the anthrax capsule, a naturally occurring component of the bacterium that causes the disease, protected mice from lethal anthrax infection, according to scientists at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID). In addition, the capsule enhanced the effects of protective antigen (PA), the protective component of the current licensed human vaccine. The work was recently published in the journal VACCINE.

According to senior author Arthur M. Friedlander, M.D., Bacillus anthracis, the causative agent of anthrax, produces three main components that allow it to do harm--lethal toxin, edema toxin, and the capsule. During anthrax infection, the bacterium invades and grows to high concentrations in the host. The capsule surrounds the bacterium and prevents it from being ingested by host white blood cells that would otherwise destroy it, thus allowing anthrax infection to progress. The toxins are thought to act mainly by damaging defensive cells called phagocytes, causing the immune system to malfunction.

The efficacy of the current licensed anthrax vaccine, Anthrax Vaccine Adsorbed (AVA), is believed to be based on the presence of PA. Though the exact mechanism of protection is not known, antibodies to PA induced by AVA are believed to play a role in neutralizing the anthrax toxins.

USAMRIID scientists have extensively studied protective antigen, demonstrating that PA alone confers protection in animal challenge studies with both rabbits and nonhuman primates. In addition, the recombinant, highly purified version of PA developed and tested by the Institute is the basis for a next generation anthrax vaccine currently in advanced development.

However, because a response against PA is thought to target the toxins only, there is interest in identifying additional potential anthrax vaccine components that target the whole organism. According to Friedlander, scientists have suspected for some time that the anthrax capsule plays a role in conferring protection. This study provides the first definitive proof of that concept.

The research team vaccinated several groups of mice. One month after the second dose, the mice were challenged with lethal doses of spores from a strain of anthrax producing only the capsule. In the group that had received the capsule vaccine, 7 of 12 mice survived challenge. In the control group, which received injections of a placebo instead of the capsule vaccine, none of the 12 mice survived.

Next, the team evaluated the efficacy of capsule vaccines alone or in combination with PA, using the same dosage schedule as before. In this experiment, using a fully virulent strain producing both capsule and toxins, neither capsule nor PA alone protected while the combination vaccine resulted in survival of 9 of 11 mice.

"We demonstrated that protection was even greater when the capsule was combined with PA, compared to when PA was given alone," Friedlander said. "A different formulation could make it even better. The next step will be testing in additional animal models."

Friedlander's colleagues on the study were Donald J. Chabot, Angelo Scorpio, Steven A. Tobery, Stephen F. Little, and Sarah L. Norris.

"This work shows the importance of developing vaccines that target multiple agent-specific targets," said George V. Ludwig, Ph.D., interim science director for USAMRIID. "This helps reduce the possibility of technological surprise when dealing with emerging biological threats."
-end-
USAMRIID, located at Fort Detrick, Maryland, is the lead medical research laboratory for the U.S. Biological Defense Research Program, and plays a key role in national defense and in infectious disease research. The Institute's mission is to conduct basic and applied research on biological threats resulting in medical solutions (such as vaccines, drugs and diagnostics) to protect the warfighter. USAMRIID is a subordinate laboratory of the U.S. Army Medical Research and Materiel Command.

References:

Donald J. Chabot, Angelo Scorpio, Steven A. Tobery, Stephen F. Little, Sarah L. Norris, Arthur M. Friedlander. Anthrax capsule vaccine protects against experimental infection. Vaccine 23. 1:43-47 (2004).

For more information about USAMRIID: www.usamriid.army.mil

US Army Medical Research Institute of Infectious Diseases

Related Infectious Diseases Articles from Brightsurf:

Understanding the spread of infectious diseases
Physicists at M√ľnster University (Germany) have shown in model simulations that the COVID-19 infection rates decrease significantly through social distancing.

Forecasting elections with a model of infectious diseases
Election forecasting is an innately challenging endeavor, with results that can be difficult to interpret and may leave many questions unanswered after close races unfold.

COVID-19 a reminder of the challenge of emerging infectious diseases
The emergence and rapid increase in cases of coronavirus disease 2019 (COVID-19), a respiratory illness caused by a novel coronavirus, pose complex challenges to the global public health, research and medical communities, write federal scientists from NIH's National Institute of Allergy and Infectious Diseases (NIAID) and from the Centers for Disease Control and Prevention (CDC).

Certain antidepressants could provide treatment for multiple infectious diseases
Some antidepressants could potentially be used to treat a wide range of diseases caused by bacteria living within cells, according to work by researchers in the Virginia Commonwealth University School of Medicine and collaborators at other institutions.

Opioid epidemic is increasing rates of some infectious diseases
The US faces a public health crisis as the opioid epidemic fuels growing rates of certain infectious diseases, including HIV/AIDS, hepatitis, heart infections, and skin and soft tissue infections.

Infectious diseases could be diagnosed with smartphones in sub-Saharan Africa
A new Imperial-led review has outlined how health workers could use existing phones to predict and curb the spread of infectious diseases.

The Lancet Infectious Diseases: Experts warn of a surge in vector-borne diseases as humanitarian crisis in Venezuela worsens
The ongoing humanitarian crisis in Venezuela is accelerating the re-emergence of vector-borne diseases such as malaria, Chagas disease, dengue, and Zika virus, and threatens to jeopardize public health gains in the country over the past two decades, warn leading public health experts.

Glow-in-the-dark paper as a rapid test for infectious diseases
Researchers from Eindhoven University of Technology (The Netherlands) and Keio University (Japan) present a practicable and reliable way to test for infectious diseases.

Math shows how human behavior spreads infectious diseases
Mathematics can help public health workers better understand and influence human behaviors that lead to the spread of infectious disease, according to a study from the University of Waterloo.

Many Americans say infectious and emerging diseases in other countries will threaten the US
An overwhelming majority of Americans (95%) think infectious and emerging diseases facing other countries will pose a 'major' or 'minor' threat to the U.S. in the next few years, but more than half (61%) say they are confident the federal government can prevent a major infectious disease outbreak in the US, according to a new national public opinion survey commissioned by Research!America and the American Society for Microbiology.

Read More: Infectious Diseases News and Infectious Diseases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.