New approach to BSE successful in lab

December 01, 2006

A new method of treatment can appreciably slow down the progress of the fatal brain disease scrapie in mice. This has been established by researchers from the Universities of Munich and Bonn together with their colleagues at the Max Planck Institute in Martinsried. To do this they used an effect discovered by the US researchers Craig Mello and Andrew Fire, for which they were awarded this year's Nobel Prize for Medicine. Scrapie is a variant of the cattle disease BSE and the human equivalent Creutzfeld-Jakob disease. However, it will take years for the method to be introduced to medicine, the researchers warn. Their findings are published in the next issue of the Journal of Clinical Investigation (Vol. 116, No. 12, December 2006).

Scrapie, Creutzfeld-Jakob and BSE are among the most unusual diseases known to medical research. Unusual because the pathogens are apparently neither viruses nor bacteria, being simply protein molecules known as protein prions. What is even more peculiar: exactly the same prion proteins occur in healthy animals. The only difference is that they have a different shape. When there is contact with their 'diseased twins' they change their shape, also becoming 'diseased.' The result is an irresistible chain reaction. The malformed prion proteins can be deposited in the brain, thereby destroying brain tissue. Prion diseases are always fatal, often, however, not until months after the outbreak of the disease. As yet there is no cure.

In mice suffering from scrapie the pathogenic prion protein is known as PrP-Scr, whereas the normal variant is PrP-C. PrP-C seems to have a protective effect in diseases like a stroke. Interestingly, mice which cannot produce any PrP-C appear to be completely healthy. This has become the starting point for a new therapeutic approach which for some years now has been current in research circles: can we not simply switch off the production of 'healthy' PrP-C in infected animals, thereby depriving the 'diseased' PrP-Scr of its ability to spread" In this way the chain reaction would be interrupted.

New therapeutic approach

Scientists from Munich's Ludwig Maximilian University and the University of Bonn, in conjunction with colleagues from the Max Planck Institute in Martinsried, have been testing whether this approach works. In doing so they cut back the production of PrP-C in mice by means of an ingenious procedure. The researchers used a special RNA molecule for this purpose. RNA is related to the genetic molecule DNA. There are types of RNA known as siRNAs which can attach themselves to specific genes, thereby preventing these from being 'read'. The production of the appropriate protein is thus shut down. This effect is known as RNA interference; its discovery was rewarded with this year's Nobel Prize for Medicine. "We modified the brain cells of mice in such a way that they were able to produce siRNAs in place of the 'healthy' PrP-C protein," explains Professor Alexander Pfeifer, director of the Institute of Pharmacology of the University of Bonn. "In cell cultures the production of PrP-C was thereby cut back by up to 97 per cent."

The researchers then tested what effect these siRNAs had on mice which had scrapie. 'If brain cells are to produce siRNAs, you have to smuggle in the corresponding gene,' says Professor Kretschmar, director of the Prion Centre of Munich's Ludwig Maximilian University. 'But presumably we'll never manage to equip all the cells in the brain with this gene.' This is why the researchers also wanted to find out how many cells they have to 'revamp' genetically to treat scrapie or similar diseases successfully. For this purpose they bred mice that only had some brain cells which could produce siRNAs. 'Whereas the untreated mice died on average after 165 days, the mice which had been treated lived appreciably longer,' is how Professor Kretschmar summarises the results.

BSE-resistant cattle"

It varied how much longer they lived: if only a few cells could produce siRNAs, the mice died at almost the same time as the control mice, i.e. on average after 170 days. However, if the majority of the brain cells were protected by siRNA, the mice survived the prion disease for up to 230 days, in other words about a third longer.

'Basically siRNAs seem to be a promising therapeutic option for scrapie, CJD or BSE,' Professor Pfeifer emphasises. 'However, it will take years before the method can be used on human beings.' The method is also relevant for animal breeding: in principle it can be used to breed cattle which cannot produce any PrP-C. They would then be resistant to BSE.
-end-
Professor Hans A. Kretzschmar
Centre of Neuropathology and Prion Research of the LMU
Tel.: ++49-(0)89-2180-78000
Email: Hans.Kretzschmar@med.uni-muenchen.de

University of Bonn

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.