Foretelling a major meltdown

December 01, 2008

BINGHAMTON, NY -- By discovering the meaning of a rare mineral that can be used to track ancient climates, Binghamton University geologist Tim Lowenstein is helping climatologists and others better understand what we're probably in for over the next century or two as global warming begins to crank up the heat -- and, ultimately, to change life as we know it.

"I think the earth will be a very different place in the next hundred years or so, and that many species will adapt to it and many won't," Lowenstein said. "Humans are supremely good at adapting. But, rich countries will adapt much better than poor countries and other species will have far more trouble coping with environmental change. There are going to be challenges we can't even imagine right now."

Lowenstein's concerns are rooted not in speculation about unprecedented future happenings, but in the scientific discovery and analysis of mineral samples formed during the Eocene Epoch, the warmest period on earth in the last 65 million years.

What Lowenstein and his colleague Robert Demicco at Binghamton University have discovered is that nahcolite, a rare, yellowish-green or brown carbonate mineral, only forms on earth under environmental conditions marked by very high atmospheric CO2 levels. That establishes it as both a marker and a benchmark that can be used by scientists as they consider the likely climatic implications of ever-increasing CO2 levels in our atmosphere today. More specifically, nahcolite suggests that Eocene warming was concurrent with atmospheric CO2 levels of at least 1,125 parts per million (ppm), which is 3 times the current levels of 380 ppm, but not all that much higher than we can expect on earth in the next 100 years or so given generally accepted scientific projections based on fossil-fuel consumption.

Because CO2 is a forcing factor for climate change, increases in its levels can be directly tied to global warming. A greenhouse gas, CO2 absorbs radiation that would normally be reflected out of the atmosphere, helping to ramp up temperatures, melt glaciers and significantly alter ocean currents and weather patterns.

As for steep, projected increases in CO2 levels over the next century, Lowenstein thinks that might not be our only cause for concern.

"If we assume that you and I are both in our 50s, the change in atmospheric CO2 in our lifetime is greater than the rate of any change in at least the last half million years," said Lowenstein, who is particularly concerned about unexpected changes

"Right now, we're on a predictable pace. But there will likely be tipping points, unexpected events that could really change things, so all of a sudden we may get changes in ocean circulation that we never would have predicted, or the tundra may melt. Some unexpected event is going to occur that's going to be more dramatic than the progressive changes that occurred over the last 100 years."

As a scientist, Lowenstein has no doubt that burning oil, gas and coal are fueling global warming and creating, along with environmental degradation, an immediate threat to some species of life on the planet. His opinion is unchanged by those who would point to the earth's ancient hothouse past as proof that natural swings in climate take place with or without human intervention.

Lowenstein said these consequences seem more and more likely without drastic change.

"The glacier on Mount Kilimanjaro has not much time left even now. Many mountain glaciers are going to disappear," he said. "It all depends on how much fossil fuel we burn. But if we keep doing what we're doing now, we will be up to the CO2 levels of the Eocene within another 100 or 200 years."

As Lowenstein points out, although it is difficult to predict how global temperatures over the coming centuries will compare to the Eocene, the "hothouse" world 50 million years ago should serve as a reminder of what global changes are possible.
-end-
For more on Binghamton University research, visit http://research.binghamton.edu/BinghamtonResearch/2008/

Binghamton University

Related Global Warming Articles from Brightsurf:

The ocean has become more stratified with global warming
A new study found that the global ocean has become more layered and resistant to vertical mixing as warming from the surface creates increasing stratification.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Global warming and extinction risk
How can fossils predict the consequences of climate change? A German research team from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), the Museum of Natural History Berlin and the Alfred Wegener Institute compared data from fossil and marine organisms living today to predict which groups of animals are most at risk from climate change.

Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.

Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.

Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.

Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.

Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.

Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.

Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.

Read More: Global Warming News and Global Warming Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.