A modernized methodology for obtaining new varieties of potato

December 01, 2009

Research into the potato tuber at the Basque Institute for Agricultural Research and Development and at the NEIKER-Tecnalia Technology Centre has, in recent years, focused on the development of new varieties of potato adapted to Spanish agro-climatic conditions. The Basque technology centre has updated the traditional system for improving strains of the tuber by involving novel techniques that enable obtaining new varieties that are the most resistant, productive and apt for both fresh consumption and for industrial processing. In 2009 three new varieties have been inscribed in the Spanish Office for Plant Varieties, the Basque names of which are Leire, Mirari y Harana.

The genetic improvement programme for obtaining new varieties developed by NEIKER-Tecnalia are focused on the following characteristics:In recent years NEIKER-Tecnalia has incorporated various complementing methodologies into the traditional and predominant one - such as the enhancement of the diploid level, the cultivation of tissues applied to the maintenance and micropropagation of varieties, selection assisted by means of molecular markers and genotyping.

Classical improvement programmes are based on the creation of variability by means of directed crosses and the subsequent selection of the desired descendent genotypes and in successive clonal generations. The three initial and fundamental phases in the process are: selection of genitors, programme of crosses and the selection of seedlings in the first generation.

The selection of genitors is one of the key elements in the NEIKER-Tecnalia programme; it has a Germoplasm Bank with 500 commercial varieties, apart from enhancement clones and species of the Solanum genus that form part of parentals employed in the crossing programmes. This database may be consulted at: www.neiker.net/neiker/germoplasma.

Crosses are mainly undertaken in winter. In the female genitors the stalks with inflorescences are cut, the buds castrated and then pollination carried out, keeping the stems in jars with water, fungicide and antibiotic, in a greenhouse. If the pollination has been successful, berries are formed, each of which may contain up to 200 seeds.

Once the seeds are mature, their extraction and conservation are carried out. The descendency of each crossing is sowed separately in seed beds. Families from parentals immune to the Y virus (PVY) are inoculated artificially, eliminating seedlings with symptoms. The rest is transplanted to pots in order to obtain the first year clones. During the gathering a more intense selection is carried out, taking into consideration the appearance of the tuber: homogeneity, depth of the eyes, colour of the peel and the flesh.

In this way, the sowing of the selected clones is undertaken successively, following a procedure that enables an estimate of production. Based on advanced, third-year clones, the analyses of consumption quality - both fresh and industrial - are incorporated.

Third generation clones are sent to a Spanish trials network, which distributes them to different zones throughout the country with the objective of being sown and consumed. Moreover, advanced clones are also sent to countries such as Holland, Germany and Argentina.

Based on the overall data on quality, resistance and production, the best clones are selected to be sent to the Registry of Commercial Varieties at the Spanish office for Plant Varieties. After two years of trials, the National Assessment Commission decides the inclusion or otherwise in the list of new varieties.

As can be observed, the period for obtaining official registration of a variety oscillates between six and seven years. Nevertheless, it should be taken into account that it is an ongoing process, in which each year clones at all stages of selection coexist in a parallel manner.

Characterisation and evaluation of native varieties

Recently initiated has been the characterisation of varieties of the potato native to Latin America and belonging to the Solanum genus. To date, these valuable tubers have not been efficiently exploited due to the geographical isolation of their zones of origin. This is why NEIKER-Tecnalia, in collaboration with other institutions in Latin America, is undertaking a project to evaluate a series of native varieties with the goal of determining their nutritional characteristics and their quality and resistance features.

In this way, varieties have been found with high content of dry material and resistant to fungi. The final goal is their incorporation as parentals in the NEIKER-Tecnalia programme for obtaining new varieties.
-end-


Elhuyar Fundazioa

Related Agricultural Research Articles from Brightsurf:

Researchers map genomes of agricultural monsters
The University of Cincinnati is unlocking the genomes of creepy agricultural pests like screwworms that feast on livestock from the inside out and thrips that transmit viruses to plants.

Texas Tech, Nanjing Agricultural Research teams make plant nutrient delivery breakthrough
The collaboration revealed that the symbiotic relationship between plants and fungi provides nitrates to plants, which could lead to reduced fertilizer use.

Genomes published for major agricultural weeds
Representing some of the most troublesome agricultural weeds, waterhemp, smooth pigweed, and Palmer amaranth impact crop production systems across the US and elsewhere with ripple effects felt by economies worldwide.

Tennessee agricultural sectors taking a hit from COVID-19
The latest research from the University of Tennessee Institute of Agriculture indicates that the COVID-19 pandemic has affected all aspects of agricultural commodity production and distribution, leading to substantial price declines and reduced income for farmers.

Experts apply microbiome research to agricultural science to increase crop yield
In an effort to increase crop yield, scientists at Northern Arizona University's Pathogen and Microbiome Institute (PMI) are working with Purdue University researchers to study the bacterial and fungal communities in soil to understand how microbiomes are impacting agricultural crops.

Digital agriculture paves the road to agricultural sustainability
In a study published in Nature Sustainability, researchers outline how to develop a more sustainable land management system through data collection and stakeholder buy-in.

Significant potential demonstrated by digital agricultural advice
2019 Economics Nobel Laureate co-publishes paper demonstrating the potential for digital agricultural advice to 'sustainably' raise 'agricultural productivity' at low cost for 2 billion smallholder farming families.

Sustaining roads with grape and agricultural waste
The US spends $5 billion a year to repair damages to road infrastructure from winter snow and ice control operations and the use of traditional deicers.

The benefits of updating agricultural drainage infrastructure
The massive underground infrastructure that allows farmers to cultivate crops on much of the world's most productive land has outlived its design life and should be updated, according to a new study.

The next agricultural revolution is here
By using modern gene-editing technologies to learn key insights about past agricultural revolutions, two plant scientists are suggesting that the next agricultural revolution could be at hand.

Read More: Agricultural Research News and Agricultural Research Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.