Blame the environment: Why vaccines may be ineffective for some people

December 01, 2010

A new discovery may explain why a tuberculosis vaccine is not as effective for some people as anticipated, and potentially explains why other vaccines do not work as well for some as they do for others. In a research report presented in the December 2010 issue of the Journal of Leukocyte Biology (http://www.jleukbio.org), scientists from Singapore show that Mycobacterium chelonae, a common environmental bacterium found in soil and water, can decrease the effectiveness of the bacille Calmette-Guerin (BCG) vaccine used to prevent tuberculosis, especially in countries outside of the United States.

"Uncovering the reasons why BCG is failing will help researchers in designing new, more effective vaccines against TB," said Geok Teng Seah, Ph.D., a researcher involved in the work from the Department of Microbiology at the National University of Singapore. "This will give us more tools to fight this globally significant infectious disease."

To make this discovery, scientists studied mice with and without prior exposure to M. chelonae. When subsequently given BCG vaccine, the mice with prior exposure to M. chelonae produced higher amounts of suppressive chemical signals; these chemical signals are believed to reduce the level of immunity induced by BCG vaccine in the host mice. Then the researchers extracted certain white blood cells with known suppressive functions from both exposed and unexposed mice. After transferring these cells into separate groups of unexposed mice, they found that recipients of suppressor cells from M. chelonae exposed mice did not respond as strongly to BCG vaccine as recipients of suppressor cells from unexposed donor mice. This indicates that the suppressor cells from M. chelonae exposed mice are functionally different from those of unexposed mice. Ultimately, the data suggest that these suppressor cells, induced in the host when exposed to M. chelonae, dampen the effectiveness of the BCG vaccine.

"This study sheds important light on why many immunological therapies and vaccines look great in the lab, but fall short in the real world," said John Wherry, Ph.D., Deputy Editor of the Journal of Leukocyte Biology. "Humans are exposed to many more non-disease causing bacteria and viruses compared to relatively clean laboratory animals, and as this study shows with a TB vaccine, environmental exposure to one kind of bacteria can influence the efficacy of immunity to different, more dangerous bugs."
-end-
The Journal of Leukocyte Biology (http://www.jleukbio.org) publishes peer-reviewed manuscripts on original investigations focusing on the cellular and molecular biology of leukocytes and on the origins, the developmental biology, biochemistry and functions of granulocytes, lymphocytes, mononuclear phagocytes and other cells involved in host defense and inflammation. The Journal of Leukocyte Biology is published by the Society for Leukocyte Biology.

Details: Peiying Ho, Xing Wei, and Geok Teng Seah. Regulatory T cells induced by Mycobacterium chelonae sensitization influence murine responses to bacille Calmette-Guérin.

J. Leuk. Bio. December 2010 88:1073-1080; doi:10.1189/jlb.0809582 ; http://www.jleukbio.org/content/88/6/1073.abstract

Federation of American Societies for Experimental Biology

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.