Longevity breakthrough: The metabolic state of mitochondria controls life span

December 01, 2010

If you think life's too short, then you're not alone. A team of scientists from Texas set out to find what it would take to live a very long life and they made important discoveries that bring longer life spans much closer to reality. A new research report featured on the cover of The FASEB Journal (http://www.fasebj.org), describes how scientists "activated" life extension in the worm, C. elegans, and in the process discovered a new metabolic state correlating with long life.

"C. elegans has provided a useful animal model for human biology," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "because of their relative simplicity and our understanding of the genes that control their metabolism. Helping these worms to live longer is a proof of concept; indeed much of what we now know about human aging was first worked out in these worms."

To make this discovery, scientists compared one class of long-lived C. elegans, called the Mit mutants, with non-mutant wild type C. elegans. Their comparison showed significant metabolism changes, suggesting that their cellular engines had been reconfigured to run on new fuels and to make new waste products, leading to increased lifespans. To determine the cause of these metabolism changes, scientists created a new method for collecting cellular waste and studied it to identify the specific chemical reactions. They found that that the worms achieved long life through changes in how their cells extracted energy (metabolic state). Although C. elegans often is used as an animal model for human biology, more research is needed to determine if an equivalent metabolic state could be created in humans with the same results.

"This research on worms shows that the secret to a long life comes from how we extract energy from our food," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "With any luck, we'll be able to change human life in the same direction: onward and upward!"
-end-
Receive monthly highlights from the FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB). The journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 23 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve--through their research--the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Jeffrey A. Butler, Natascia Ventura, Thomas E. Johnson, and Shane L. Rea. Long-lived mitochondrial (Mit) mutants of Caenorhabditis elegans utilize a novel metabolism. FASEB J. December 2010 24:4977-4988; doi:10.1096/fj.10-162941 ; http://www.fasebj.org/content/24/12/4977.abstract

Federation of American Societies for Experimental Biology

Related Metabolism Articles from Brightsurf:

Early trauma influences metabolism across generations
A study by the Brain Research Institute at UZH reveals that early trauma leads to changes in blood metabolites - similarly in mice and humans.

Cannabinoids decrease the metabolism of glucose in the brain
What happens when THC acts on the glial cells named astrocytes ?

New role of arginine metabolism in plant morphogenesis identified
A research team led by ExCELLS/NIBB found that arginine metabolism has a vital role in regulating gametophore shoot formation in the moss Physcomitrium patens.

Watching changes in plant metabolism -- live
Almost all life on Earth, e.g. our food and health, depend on metabolism in plants.

redHUMAN: Deciphering links between genes and metabolism
Scientists at EPFL have developed a new method that simplifies the processing of genetic-metabolic data by picking up changes in metabolism, a hallmark of numerous diseases like cancer and Alzheimer's.

Lipid metabolism controls brain development
A lipid metabolism enzyme controls brain stem cell activity and lifelong brain development.

Inhibition of sphingolipid metabolism and neurodegenerative diseases
Disrupting the production of a class of lipids known as sphingolipids in neurons improved symptoms of neurodegeneration and increased survival in a mouse model.

Viruses don't have a metabolism; but some have the building blocks for one
'Giant viruses' are many times larger than typical viruses and have more complex genomes.

New metabolism discovered in bacteria
Microbiologists at Goethe University Frankfurt have discovered how the bacterium Acetobacterium woodii uses hydrogen in a kind of cycle to conserve energy.

Protein controls fat metabolism
A protein in the cell envelope influences the rate of fatty acid uptake in cells.

Read More: Metabolism News and Metabolism Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.