$4.3 million DARPA grant enables development of biological and chemical threat detector

December 01, 2010

A new class of sensors able to detect multiple biological and chemical threats simultaneously with unprecedented performance may soon be within reach thanks to the establishment of a multi-million dollar research center led by Georgia Institute of Technology engineers.

Biological and chemical sensing are active research areas because of their applications in clinical screening, drug discovery, food safety, environmental monitoring and homeland security. Using integrated photonics, the new class of sensors will be capable of detecting chemical agents -- such as toxins, pollutants and trace gases -- and biological agents -- such as proteins, viruses and antibodies -- simultaneously on the same chip.

"The proposed sensors will detect multiple biological and chemical threats on a compact integrated platform faster, less expensively and more sensitively than the current state-of-the-art sensors," said the center's leader Ali Adibi, a professor in the School of Electrical and Computer Engineering at Georgia Tech.

The Defense Advanced Research Projects Agency (DARPA) is funding the two-year $4.3 million center as one of its Centers in Integrated Photonics Engineering Research (CIPhER), which investigate innovative approaches that enable revolutionary advances in science, devices or systems. For its center, Georgia Tech is working with researchers from Emory University; Massachusetts Institute of Technology; University of California, Santa Cruz; and Yale University. The team also includes industry collaborators Rockwell Collins, Kotura, Santur Corporation and NanoRods.

To create an integrated chip that will simultaneously detect multiple biological and chemical agents, the researchers need to achieve three major goals:Adibi is leading the first thrust, which is primarily focused on fabricating the millimeter-square sensing structures and on-chip spectrometers that will enable multiplexing -- the detection of multiple agents using the same sensing modules. The sensors will detect changes in the refractive index, Raman emission, fluorescence, absorption spectra and optomechanical properties when a sample that includes specific biological or chemical particles interacts with the sensor coatings. Combining information obtained from the five different sensing modalities will maximize the sensor specificity and minimize its false detection rate, the researchers say.

"The goal is to achieve very high sensitivity for each modality and investigate the advantages of each modality for different classes of biological and chemical agents in order to develop a clear set of guidelines for combining different modalities to achieve the desired performance for a specific set of agents," explained Adibi.

Massachusetts Institute of Technology chemistry professor Timothy Swager is leading the second part of this project, which aims to design surface coatings that will achieve maximum sensor specificity in detecting multiple biological and chemical agents.

"We plan to develop glycan-based surface coatings to sense biological agents and polymer-based surface coatings to sense chemical agents," noted Adibi.

For the third thrust, which is being led by Massachusetts Institute of Technology electrical engineering associate professor Jongyoon Han, the researchers will develop optimal sample preparation and delivery techniques. Their goal is to maximize the biological or chemical particle concentration in the sample and limit detection time to minutes.

"In two years, we hope to have a lab-on-a-chip system that includes all of the sensing modalities with appropriate coatings and microfluidic delivery," said Adibi. "To show the feasibility of the technology, we plan to demonstrate the high sensitivity and high selectivity of each sensor individually and be able to use at least two of the sensing modalities simultaneously to detect two or three different chemical or biological agents."

In addition to those already mentioned, this center also includes Georgia Tech chemistry and biochemistry professor Mostafa El-Sayed, Georgia Tech materials science and engineering professor Kenneth Sandhage, Georgia Tech Nanotechnology Research Center senior research scientist David Gottfried, Emory University biochemistry chair Richard Cummings, University of California Santa Cruz electrical engineering professor Holger Schmidt, and Yale University electrical engineering associate professor Hong Tang.
-end-


Georgia Institute of Technology

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.