U-M researchers identify protein essential for cell division in blood-forming stem cells

December 01, 2010

ANN ARBOR, Mich.---University of Michigan researchers have discovered that a protein known to regulate cellular metabolism is also necessary for normal cell division in blood-forming stem cells. Loss of the protein results in an abnormal number of chromosomes and a high rate of cell death.

The finding demonstrates that stem cells are metabolically different from other blood-forming cells, which can divide without the protein, Lkb1. This metabolic difference could someday be used to better control the behavior of blood-forming stem cells used in disease treatments, said Sean Morrison, director of the U-M Center for Stem Cell Biology, which is based at the Life Sciences Institute.

"This raises the possibility that, in the future, we may be able to modulate stem cell function --when treating degenerative diseases or when performing cell therapies---by altering the metabolism of the cells," said Morrison, a Howard Hughes Medical Institute investigator. "It opens up a whole new area of inquiry that, until now, had not been recognized."

Lkb1 is a protein kinase that acts as a tumor suppressor and coordinates cellular metabolism with cell growth. Specifically, Lkb1 (and another kinase called AMPK) helps maintain a balance between a cell's internal energy production and the process of cell division, sending signals to halt division when a cell lacks the energy needed to execute the process.

Few studies have examined stem cell metabolism. There's been a widespread assumption among biologists that basic metabolic processes are broadly similar in most cell types.

In many types of cells, deleting the genes that make Lkb1 and AMPK leads to tissue overgrowth and the formation of tumors, presumably because the cells no long receive signals telling them to stop dividing.

Morrison's team deleted the two genes in blood-forming stem cells of mice---the first time these genes have been "knocked out" in stem cells---then observed and measured the effects. Their results are reported in the Dec. 2 edition of the journal Nature.

"One obvious prediction you'd make, based on the outcome of previous studies, is that the cells would start to hyper-proliferate," said Daisuke Nakada, a research fellow at the U-M Life Sciences Institute and first author of the Nature paper.

"But that's not what we saw at all," Morrison said. "Deletion of the Lkb1 gene induced cell death in blood-forming stem cells, and the cells disappeared faster than anything we've ever seen before."

The observed cell death is likely due to defects in energy production within the stem cells, as well as another effect observed by Morrison's team. They found that knocking out the Lkb1 gene derailed the cell division process, leading to unhealthy daughter cells with the wrong number of chromosomes.

Normal cell division, known as mitosis, results in the separation of replicated chromosomes and the formation of two daughter nuclei with identical sets of chromosomes and genes. Inside the dividing cell's nucleus, a structure called a mitotic spindle pulls chromosomes into the daughter cells in an orderly fashion.

Morrison's team found that deleting Lkb1 resulted in mitotic chaos. Multiple mitotic spindles formed, pulling the chromosomes into a tangled mess.

"The cells that survive this mayhem have an abnormal number of chromosomes, which we think leads to the death of a lot of cells," Morrison said. "So Lkb1 is acutely required for blood-forming stem cells to divide properly."
In addition to Nakada and Morrison, the other author of the Nature paper is Thomas Saunders, a research assistant professor in the Department of Internal Medicine at the Medical School and managing director of U-M's Transgenic Animal Model Core.

The work was supported by the Howard Hughes Medical Institute. Flow cytometry was partially supported by a National Institutes of Health grant to the U-M Comprehensive Cancer Center. Nakada was supported by a postdoctoral fellowship from the Japan Society for the Promotion of Science.

Two other papers examining Lkb1's role in regulating cellular metabolism in blood-forming stem cells appear in the same edition of Nature. Both papers are by Harvard University researchers and report results consistent with the U-M findings.

Related links:

U-M Center for Stem Cell Biology:

University of Michigan

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.