Adult stem cells use special pathways to repair damaged muscle, MU researchers find

December 01, 2011

COLUMBIA, Mo. - When a muscle is damaged, dormant adult stem cells called satellite cells are signaled to "wake up" and contribute to repairing the muscle. University of Missouri researchers recently found how even distant satellite cells could help with the repair, and are now learning how the stem cells travel within the tissue. This knowledge could ultimately help doctors more effectively treat muscle disorders such as muscular dystrophy, in which the muscle is easily damaged and the patient's satellite cells have lost the ability to repair.

"When your muscles are injured, they send out a 'mayday' for satellite cells to come and fix them, and those cells know where to go to make more muscle cells, and eventually new muscle tissue," said D Cornelison, an associate professor of biological sciences in the College of Arts and Science and a researcher in the Bond Life Sciences Center. "There is currently no effective satellite cell-based therapy for muscular dystrophy in humans. One problem with current treatments is that it requires 100 stem cell injections per square centimeter, and up to 4,000 injections in a single muscle for the patient, because the stem cells don't seem to be able to spread out very far. If we can learn how normal, healthy satellite cells are able to travel around in the muscles, clinical researchers might use that information to change how injected cells act and improve the efficiency of the treatment."

In a new study, researchers in Cornelison's lab used time-lapse microscopy to follow the movement of the satellite cells over narrow "stripes" of different proteins painted onto the glass slide. The researchers found that several versions of a protein called ephrin had the same effect on satellite cells: the cells that touch stripes made of ephrin immediately turn around and travel in a new direction.

"The stem cell movement is similar to the way a person would act if asked to walk blindfolded down a hallway. They would feel for the walls," Cornelison said. "Because the long, parallel muscle fibers carry these ephrin proteins on their surface, ephrin might be helping satellite cells move in a straighter line towards a distant 'mayday' signal."

If researchers gave the satellite cells the signals to differentiate and form muscle fibers in culture, the group also found that they could use stripes of ephrins to get them to arrange themselves in parallel, the way muscle fibers always do in living beings, but have never been persuaded to do in a culture dish. This leads researchers to think that ephrins might actually be regulating several of the different steps that are needed to get from a population of stem cells spread out all over the muscle, to an organized and patterned new muscle fiber.

"We are really excited about the potential of these findings to explain a lot of things that were puzzling about the way satellite cells behave in healthy muscle, compared to a muscular dystrophy patient's own cells, or cells that have been injected therapeutically," Cornelison said. "If we're really lucky, we could find something that could make a difference in these kids' lives, and that's what we want the most."
-end-
The paper, titled "Eph/ephrin interactions modulate muscle satellite cell motility and patterning," was published in the December edition of the journal Development. Co-authors include Danny Stark, Rowan Karvas and Ashley Siegel, all students from the University of Missouri Division of Biological Sciences. The National Institutes for Health funded the study.

University of Missouri-Columbia

Related Muscular Dystrophy Articles from Brightsurf:

Using CRISPR to find muscular dystrophy treatments
A study from Boston Children's Hospital used CRISPR-Cas9 to better understand facioscapulohumeral muscular dystrophy (FSHD) and explore potential treatments by systematically deleting every gene in the genome.

Duchenne muscular dystrophy diagnosis improved by simple accelerometers
Testing for Duchenne muscular dystrophy can require specialized equipment, invasive procedures and high expense, but measuring changes in muscle function and identifying compensatory walking gait could lead to earlier detection.

New therapy targets cause of adult-onset muscular dystrophy
The compound designed at Scripps Research, called Cugamycin, works by recognizing toxic RNA repeats and destroying the garbled gene transcript.

Gene therapy cassettes improved for muscular dystrophy
Experimental gene therapy cassettes for Duchenne muscular dystrophy have been modified to deliver better performance.

Discovery points to innovative new way to treat Duchenne muscular dystrophy
Researchers at The Ottawa Hospital and the University of Ottawa have discovered a new way to treat the loss of muscle function caused by Duchenne muscular dystrophy in animal models of the disease.

Extracellular RNA in urine may provide useful biomarkers for muscular dystrophy
Massachusetts General Hospital researchers have found that extracellular RNA in urine may be a source of biomarkers for the two most common forms of muscular dystrophy, noninvasively providing information about whether therapeutic drugs are having the desired effects on a molecular level.

Tamoxifen and raloxifene slow down the progression of muscular dystrophy
Steroids are currently the only available treatment to reduce the repetitive cycles of inflammation and disease progression associated with functional deterioration in patients with muscular dystrophy (MD).

Designed proteins to treat muscular dystrophy
The cell scaffolding holds muscle fibers together and protects them from damage.

Gene-editing alternative corrects Duchenne muscular dystrophy
Using the new gene-editing enzyme CRISPR-Cpf1, researchers at UT Southwestern Medical Center have successfully corrected Duchenne muscular dystrophy in human cells and mice in the lab.

GW researcher finds genetic cause of new type of muscular dystrophy
George Washington University & St. George's University of London research, published in The American Journal of Human Genetics, outlines a newly discovered genetic mutation associated with short stature, muscle weakness, intellectual disability, and cataracts, leading researchers to believe this is a new type of congenital muscular dystrophy.

Read More: Muscular Dystrophy News and Muscular Dystrophy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.