X-ray analysis deciphers master regulator important for skin cancer

December 01, 2012

With the X-ray vision of DESY's light source DORIS, a research team from Hamburg and Iceland has uncovered the molecular structure of a master regulator central to the most deadly form of skin cancer, melanoma. The results, published in the scientific journal "Genes & Development", throw new light on the workings of the so-called Microphthalmia-associated Transcription Factor MITF, that is not only connected to skin cancer, but also to a variety of hereditary diseases where the production of the skin pigment melanin is disturbed, and to certain aspects of ageing. "Our data could provide a rational basis for the development of tailor-made drugs targeting MITF", explains first author Vivian Pogenberg from the Hamburg branch of the European Molecular Biology Laboratory (EMBL). Deutsches Elektronen-Synchrotron DESY is the leading German accelerator centre and one of the leading in the world. Among other things, DESY develops and provides accelerator based light sources for research.

Melanoma is a malignant tumor of the cells that produce the skin pigment melanin, the melanocytes. It is not the most common form of skin cancer but the one with the greatest death toll by far: about 3 out of 4 skin cancer related deaths are caused by melanoma. Important for the development of melanoma are malfunctions of the Microphtalmia-associated Transcription Factor MITF. Transcription factors regulate which part of the DNA is read and transcribed into a blueprint for a protein within the cell. Only few parts of the DNA are active in each cell, and this activity also changes with time. MITF for instance activates the cell's machinery to turn the amino acid tyrosine into the pigment melanin.

But MITF also makes stem cells turn into melanocytes in the first place and controls cell proliferation and death in these cells. That's why MITF is called a master regulator. In fact, it also has functions in other cell types like mast cells of the immune system and bone eating osteoclasts. Mutations in MITF not only play a role in the development of skin cancer, but also cause severe genetic diseases like the Tietz and Waardenburg syndromes that lead to deafness, skin and hair pigmentation defects, abnormal eye anatomy and altered vision. The transcription factor also plays a role in our hair turning grey with age and other age-related pigmentation alterations.

The researchers crystallised MITF in the lab and x-rayed them with DORIS. Crystals scatter X-rays in characteristic ways and produce diffraction patterns from which the structure of the crystal - and here MITF - can be reconstructed. The analysis revealed unexpected molecular insertions that give MITF a unique kink. MITF forms a dimer with a long coiled-coil protein "zipper", and the kink in this zipper limits MITF's ability to bind to other transcription factors. The team could also identify structural changes caused by a number of MITF mutations known to lead to particular coat colours in mice and to Tietz or Waardenburg syndrome in humans. The different forms of MITF were supplied by the University of Iceland, where the lab of Eiríkur Steingrímsson hosts a comprehensive MITF library. Steingrímsson also provided his expertise in cell biology and genetics to support the structural data produced in Hamburg.

Thanks to the structural information from DORIS the team could also investigate the binding site of MITF to the DNA at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The analysis revealed for instance that the eponymous mutation (the one leading to white coats and small eyes - or microphthalmia - in mice) causes structural changes in the MITF that prevents it from binding to the DNA. Other mutations also affect the binding site to the DNA, making MITF bind to the wrong genes. "Ultimately the goal will be to fully understand how MITF functions to evaluate how it can be targeted for potential treatment", says Matthias Wilmanns, a group leader at EMBL Hamburg. "One way would be, for instance, to design molecules that specifically stop MITF dimerisation in melanocytes," explains Pogenberg. "Or, on an alternative route, a different custom made molecule could stop the recognition of DNA by MITF."
-end-
Reference

Restricted leucine zipper dimerization and specificity of DNA recognition of the melanocyte master regulator MITF; Vivian Pogenberg et al.; "Genes & Development", 2012; DOI: 10.1101/gad.198192.112

Deutsches Elektronen-Synchrotron DESY

Related Melanoma Articles from Brightsurf:

Boosting treatments for metastatic melanoma
University of Cincinnati clinician-scientist Soma Sengupta, MD, PhD, says that new findings from her and Daniel Pomeranz Krummel's, PhD, team might have identified a treatment-boosting drug to enhance effectiveness of therapies for metastatic cancer and make them less toxic, giving patients a fighting chance at survival and improved quality of life.

A promising new tool in the fight against melanoma
An Edith Cowan University (ECU) study has revealed that a key blood marker of cancer could be used to select the most effective treatment for melanoma.

New targets for melanoma treatment
A collaborative study led by Monash University's Biomedicine Discovery Institute and the Olivia Newton-John Cancer Research Institute (ONJCRI) has uncovered new markers (HLA-associated peptides) that are uniquely present on melanoma tumours and could pave the way for therapeutic vaccines to be developed in the fight against melanoma.

Innovative smartphone-camera adaptation images melanoma and non-melanoma
An article published in the Journal of Biomedical Optics (JBO), ''Point-of-care, multispectral, smartphone-based dermascopes for dermal lesion screening and erythema monitoring,'' shows that standard smartphone technology can be adapted to image skin lesions, providing a low-cost, accessible medical diagnostic tool for skin cancer.

Antihistamines may help patients with malignant melanoma
Can a very common allergy medicine improve survival among patients suffering from the serious skin cancer, malignant melanoma?

Blood test for deadly eye melanoma
A simple blood test could soon become the latest monitoring tool for the early detection of melanoma in the eye.

Analysis of melanoma in US by age groups
This study used registry data to determine annual rates of melanoma in pediatric, adolescent, young adult and adult age groups, and the findings suggest an apparent decrease among adolescent and young adults between 2006 and 2015 but increases in older adults.

Vitamin D dials down the aggression in melanoma cells
Vitamin D influences the behaviour of melanoma cells in the lab by making them less aggressive, Cancer Research UK scientists have found.

B cells linked to immunotherapy for melanoma
Immunotherapy uses our body's own immune system to fight cancer.

Five things to know about melanoma
'Five things to know about ... melanoma' in CMAJ (Canadian Medical Association Journal) provides a brief overview of this malignant skin cancer for physicians and patients.

Read More: Melanoma News and Melanoma Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.