New diaphragms grown from stem cells offer hope of a cure for common birth defect

December 01, 2015

An international collaboration between scientists in Sweden, Russia, and the United States has resulted in the successful engineering of new diaphragm tissue in rats using a mixture of stem cells and a 3D scaffold. When transplanted, it has regrown with the same complex mechanical properties of diaphragm muscle. The study is published in the journal Biomaterials, and offers hope of a cure for a common birth defect and possible future heart muscle repairs.

The multidisciplinary team behind the current study includes world-renowned researchers in the field of regenerative medicine and tissue engineering; Paolo Macchiarini, MD, PhD, Director of the Advanced Center for Regenerative Medicine and senior scientist at Karolinska Institutet; Doris Taylor, PhD, Regenerative Medicine Research Director at the Texas Heart Institute; and Mark Holterman, MD, PhD, Professor of Surgery and Pediatrics at the University of Illinois College of Medicine in Peoria, working in collaboration with a research team at the Kuban State Medical University in Russia.

The diaphragm is a sheet of muscle that has to contract and relax constantly to allow breathing. It is also important in swallowing, and acts as a barrier between the chest cavity and the abdomen. Malformations or holes in the diaphragm are found in 1 in 2,500 babies and can cause extreme, often fatal, symptoms.

At the moment, surgical repair of large defects like these involves using an artificial patch, which will not grow with the infant and does not provide any contraction to assist with breathing. The new technique presented in Biomaterials could instead allow such replacements to be grown especially for babies from their own cells, which would provide all the function of diaphragm tissue and would grow with them.

The success of this study also offers hope for the possibility of regenerating heart tissue, which undergoes similar pressure as it contracts and relaxes with every beat.

"So far, attempts to grow and transplant such new tissues have been conducted in the relatively simple organs of the bladder, windpipe and esophagus. The diaphragm, with its need for constant muscle contraction and relaxation puts complex demands on any 3D scaffold; until now, no one knew whether it would be possible to engineer," said Dr. Doris Taylor.

Dr. Paolo Macchiarini adds, "This bioengineered muscle tissue is a truly exciting step in our journey towards regenerating whole and complex organs. You can see the muscle contracting and doing its job as well as any naturally-grown tissue - there can be no argument that these replacements are truly regenerated, and the possibilities that this opens up for the future are enormous."

The field of tissue engineering involves 'growing' new tissues or organs from stem cells on three dimensional 'scaffolds,' which give both structural support and shape to the new tissue and guide the differentiation and proliferation of the stem cells. Engineered new tissues can not only help patients avoid the need for an organ donation, but also the need for the recipient to take immunosuppressant drugs.

In the current study, the researchers took diaphragm tissue from donor rats and removed all the living cells from it using a series of chemical treatments. This process removes anything that might cause an immune response in the recipient animals, while keeping all the connective tissue - or extracellular matrix - which gives tissues their structure and mechanical properties. When tested in vitro, these diaphragm scaffolds at first appeared to have lost their important rubber-like ability to be continually stretched and contracted for long periods of time. However, once seeded with bone marrow derived alloegenic stem cells and then transplanted into the animals, the diaphragm scaffolds began to function as well as undamaged organs.

The method must now be tested on larger animals before it can be tried in humans, but the hope is that tissue-engineered repairs for congenital diaphragm malformations will be at least as effective as current surgical options with the added benefit of growing with children throughout their lives.
The study was supported and financed by Bioengineering of Tracheal Tissue and the Government of the Russian Federation Grant.

Publication: 'Orthotopic transplantation of a tissue engineered diaphragm in rats.', Gubareva EA, Sjöqvist S, Gilevich IV, Sotnichenko AS, Kuevda EV, Lim ML, Feliu N, Lemon G, Danilenko KA, Nakokhov RZ, Gumenyuk IS, Grigoriev TE, Krasheninnikov SV, Pokhotko AG, Basov AA, Dzhimak SS, Gustafsson Y, Bautista G, Beltrán Rodríguez A, Pokrovsky VM, Jungebluth P, Chvalun SN, Holterman MJ, Taylor DA, Macchiarini P. Biomaterials. 2015 Nov 14;77:320-335. doi: 10.1016/j.biomaterials.2015.11.020. [Epub ahead of print]

Karolinska Institutet

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to