System boosts resolution of commercial depth sensors 1,000-fold

December 01, 2015

MIT researchers have shown that by exploiting the polarization of light -- the physical phenomenon behind polarized sunglasses and most 3-D movie systems -- they can increase the resolution of conventional 3-D imaging devices as much as 1,000 times.

The technique could lead to high-quality 3-D cameras built into cellphones, and perhaps to the ability to snap a photo of an object and then use a 3-D printer to produce a replica.

Further out, the work could also abet the development of driverless cars.

"Today, they can miniaturize 3-D cameras to fit on cellphones," says Achuta Kadambi, an MIT graduate student in media arts and sciences and one of the system's developers. "But they make compromises to the 3-D sensing, leading to very coarse recovery of geometry. That's a natural application for polarization, because you can still use a low-quality sensor, and adding a polarizing filter gives you something that's better than many machine-shop laser scanners."

The researchers describe the new system, which they call Polarized 3D, in a paper they're presenting at the International Conference on Computer Vision in December. Kadambi is the first author, and he's joined by his thesis advisor, Ramesh Raskar, associate professor of media arts and sciences in the MIT Media Lab; Boxin Shi, who was a postdoc in Raskar's group and is now a research fellow at the Rapid-Rich Object Search Lab; and Vage Taamazyan, a master's student at the Skolkovo Institute of Science and Technology in Russia, which MIT helped found in 2011.

When polarized light gets the bounce

If an electromagnetic wave can be thought of as an undulating squiggle, polarization refers to the squiggle's orientation. It could be undulating up and down, or side to side, or somewhere in-between.

Polarization also affects the way in which light bounces off of physical objects. If light strikes an object squarely, much of it will be absorbed, but whatever reflects back will have the same mix of polarizations that the incoming light did. At wider angles of reflection, however, light within a certain range of polarizations is more likely to be reflected.

This is why polarized sunglasses are good at cutting out glare: Light from the sun bouncing off asphalt or water at a low angle features an unusually heavy concentration of light with a particular polarization. So the polarization of reflected light carries information about the geometry of the objects it has struck.

This relationship has been known for centuries, but it's been hard to do anything with it, because of a fundamental ambiguity about polarized light. Light with a particular polarization, reflecting off of a surface with a particular orientation and passing through a polarizing lens is indistinguishable from light with the opposite polarization, reflecting off of a surface with the opposite orientation.

This means that for any surface in a visual scene, measurements based on polarized light offer two equally plausible hypotheses about its orientation. Canvassing all the possible combinations of either of the two orientations of every surface, in order to identify the one that makes the most sense geometrically, is a prohibitively time-consuming computation.

Polarization plus depth sensing

To resolve this ambiguity, the Media Lab researchers use coarse depth estimates provided by some other method, such as the time a light signal takes to reflect off of an object and return to its source. Even with this added information, calculating surface orientation from measurements of polarized light is complicated, but it can be done in real-time by a graphics processing unit, the type of special-purpose graphics chip found in most video game consoles.

The researchers' experimental setup consisted of a Microsoft Kinect -- which gauges depth using reflection time -- with an ordinary polarizing photographic lens placed in front of its camera. In each experiment, the researchers took three photos of an object, rotating the polarizing filter each time, and their algorithms compared the light intensities of the resulting images.

On its own, at a distance of several meters, the Kinect can resolve physical features as small as a centimeter or so across. But with the addition of the polarization information, the researchers' system could resolve features in the range of hundreds of micrometers, or one-thousandth the size.

For comparison, the researchers also imaged several of their test objects with a high-precision laser scanner, which requires that the object be inserted into the scanner bed. Polarized 3D still offered the higher resolution.

A mechanically rotated polarization filter would probably be impractical in a cellphone camera, but grids of tiny polarization filters that can overlay individual pixels in a light sensor are commercially available. Capturing three pixels' worth of light for each image pixel would reduce a cellphone camera's resolution, but no more than the color filters that existing cameras already use.

The new paper also offers the tantalizing prospect that polarization systems could aid the development of self-driving cars. Today's experimental self-driving cars are, in fact, highly reliable under normal illumination conditions, but their vision algorithms go haywire in rain, snow, or fog. That's because water particles in the air scatter light in unpredictable ways, making it much harder to interpret.

The MIT researchers show that in some very simple test cases -- which have nonetheless bedeviled conventional computer vision algorithms -- their system can exploit information contained in interfering waves of light to handle scattering. "Mitigating scattering in controlled scenes is a small step," Kadambi says. "But that's something that I think will be a cool open problem."
-end-
Additional background

ARCHIVE: Glasses-free 3-D projector http://news.mit.edu/2014/glasses-free-3-d-projector-0516

ARCHIVE: 3-D scanning, with your smartphone http://news.mit.edu/2014/3-d-scanning-with-your-smartphone-0131

ARCHIVE: 3-D cameras for cellphones http://news.mit.edu/2011/lidar-3d-camera-cellphones-0105

ARCHIVE: Portable, super-high-resolution 3-D imaging http://news.mit.edu/2011/tactile-imaging-gelsight-0809

Massachusetts Institute of Technology

Related Polarization Articles from Brightsurf:

Highly sensitive detection of circularly polarized light without a filter
Japanese scientists developed a photodiode using a crystalline film composed of lead perovskite compounds with organic chiral molecules to detect circularly polarized light without a filter.

Anti-hacking based on the circular polarization direction of light
The Internet of Things (IoT) allowing smart phones, home appliances, drones and self-driving vehicles to exchange digital information in real time requires a powerful security solution, as it can have a direct impact on user safety and assets.

Germanium telluride's hidden properties at the nanoscale revealed
Germanium Telluride is an interesting candidate material for spintronic devices.

FAST reveals mystery of fast radio bursts from the universe
The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) has revealed some mystery of the fast radio bursts, according to a study published in Nature on Oct.

Graphene detector reveals THz light's polarization
Physicists have created a broadband detector of terahertz radiation based on graphene.

Squaring the circle -- Breaking the symmetry of a sphere to control the polarization of light
Scientists at Tokyo Institute of Technology (Tokyo Tech, Japan) and Institute of Photonic Sciences (ICFO, Spain) develop a method to generate circularly polarized light from the ultimate symmetrical structure: the sphere.

Optical shaping of polarization anisotropy in a laterally-coupled-quantum-dot dimer
Coupled-quantum-dot (CQD) structures are considered to be an important building block in the development of scalable quantum devices.

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
A hemispherical vanadium oxide cluster has a cavity that can accommodate a bromine molecule.

On-chip spin-Hall nanograting for simultaneously detecting phase and polarization singularities
A plasmonic spin-Hall nanograting structure that simultaneously detects both the polarization and phase singularities of the incident beam is reported.

A new theory about political polarization
A new model of opinion formation shows how the extent to which people like or dislike each other affects their political views -- and vice versa.

Read More: Polarization News and Polarization Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.