Nav: Home

Study reveals new mechanism in nicotine addiction

December 01, 2015

Part of the reason people find smoking difficult to quit is that each time they have a cigarette, feelings of craving, irritability and anxiety melt away. This component of addiction is known as negative reward and is controlled in part by a region of the brain called the habenula. The neurotransmitters acetylcholine and glutamate are thought to influence nicotine dependence in the habenula, but the molecular details of this regulation are unclear.

"We knew that both of these neurotransmitters played important roles in the neurons in the habenula," says Ines Ibanez-Tallon, Research Associate Professor in the Laboratory of Molecular Biology, headed by James and Marilyn Simons Professor Nathaniel Heintz. "What we didn't know was how they might interact, or work together to reinforce addiction."

Ibanez-Tallon and colleagues now report that acetylcholine regulates glutamate signaling in the habenula, identifying a new mechanism important for nicotine dependence. The study was published on December 1 in eLife.

Neurotransmitter control

Neurotransmitters, the chemical messengers of the brain, are packaged into spherical structures called vesicles, which reside at the ends of neurons. Upon receiving certain signals, neurons release their vesicle contents into the synapse, perpetuating the signal onto the next neuron. Neurons can recycle neurotransmitters by reabsorbing them through reuptake, a process that allows them to precisely control the amounts of neurotransmitters in the synapse.

Even a small upset in the balance of neurotransmitters can result in altered behavior. In the case of acetylcholine, it can influence our ability to cope with addiction.

"To understand how these neurotransmitters work, we created a mouse model whose habenular neurons don't make acetylcholine because the mice lack a key gene involved in acetylcholine processing," says Ibanez-Tallon. "In our experiments, we observed that the elimination of acetylcholine affected glutamate in this brain region in two ways. First, the amount of glutamate released by neurons was reduced. And second, the reuptake of glutamate back into vesicles was impaired. Both of these mechanisms affect the excitability of neurons, meaning normal signaling is disrupted."

Based on these findings, the researchers suggest that acetylcholine regulates how much glutamate is released into the synapse, and at what frequency. It also facilitates the packaging of glutamate into vesicles.

Studies using electron microscopy confirmed that the neurotransmitters are in the same place at the same time, and are able to affect one another.

How does this affect behavior?

Behaviorally, removing acetylcholine from the habenula caused the mice to become insensitive to the rewarding properties of nicotine, and they did not develop a tolerance to continued nicotine exposure. In addition, these mice did not experience withdrawal symptoms, such as body shakes and scratching. These findings and others indicate that without acetylcholine, nicotine addiction would not occur.

Although smoking rates have decreased in recent years, there's a consistent portion of the population that continues to smoke, and a continued need for research into tobacco addiction. This study helps us understand a bit more about the brain circuitry involved in this dependence, which is also relevant to opioid and cannabinoid addiction.

Next, the Ibanez-Tallon group is interested in understanding how the interaction between acetylcholine and glutamate may work in other areas of the brain. "Because most nerve cells that release acetylcholine also release glutamate at the same time, the next challenge is to investigate whether the synergy between these two neurotransmitters is important for other functions that involve acetylcholine, such as memory and cognition."

Rockefeller University

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...