Nav: Home

IUPUI chemists develop new technique that could speed drug development

December 01, 2016

INDIANAPOLIS -- Synthesizing useful new compounds is what pharmaceutical discovery and development is all about. Researchers at the School of Science at Indiana University-Purdue University Indianapolis have devised a method to substantially speed up the process.

The IUPUI chemists have developed and tested a new molecular binding technique that could shorten or abridge the human and animal drug discovery and development process. The new method also is potentially more economical and ecologically friendly than that currently used.

The new synthetic method is used in the production of compounds containing nitrogen. Approximately 75 percent of compounds with medicinal uses have a nitrogen atom. Such drugs are used to treat a wide range of conditions including cancers, bacterial and inflammatory diseases, attention-deficit/hyperactivity disorder, Alzheimer's disease, epilepsy, asthma, and diabetes.

Drugs are chemical compounds with differing arrangements of atoms. The new drug-synthesis method is an organic chemical process taking fewer steps than older methods. It has potential usefulness in the development of a second generation of existing drugs as well as contributing to the discovery of new pharmaceutical treatments.

"Site-selective C-H arylation of primary aliphatic amines enabled by a catalytic transient directing group" is published online ahead of print in Nature Chemistry. Authors of the paper are Haibo Ge, associate professor of chemistry and chemical biology, and post-doctoral researcher Yongbing Liu of the School of Science at IUPUI.

"Having fewer steps and simpler chemical ingredients, as our method does, has potential benefits both for the pharmaceutical industry and for patients," said Ge, the organic and medicinal chemist who developed the method and is the corresponding author of the Nature Chemistry study. "Our study showed that our technique is an advancement over the currently used method.

"While we are still at an early stage, it appears that in addition to improving the process of synthesizing molecules, our improved method makes that process more economical by saving time and labor. As it is "atom efficient," there is less waste needing disposal."

Using their new method, the IUPUI chemists successfully synthesized analogues of fingolimod, a drug used to treat relapsing forms of multiple sclerosis, an autoimmune inflammatory disease.

"Hydrocarbons -- compounds made out of carbon and hydrogen or having a carbon-hydrogen bond -- are used in daily life all the time - from clothes to toothbrushes," said Partha Basu, chair and professor of chemistry and biological chemistry at IUPUI. "These compounds are generally stable and do not react easily with common chemicals. Transformation of one hydrocarbon to another is of immense interest for developing new materials, from drugs to energy storage.

"But making such transformation in a selective way has been a challenge for more than a century. This is what Dr. Ge did using a simple but efficient process that requires fewer steps. This simplicity makes the chemistry unique, and it can have a lasting impression in the field of C-H bond activation," Basu said.
-end-
The School of Science at IUPUI and NSF grant CHE-1350541 funded the development of the new method and the Nature Chemistry study.

The School of Science at IUPUI is committed to excellence in teaching, research and service in the biological, physical, computational, behavioral and mathematical sciences. The School is dedicated to being a leading resource for interdisciplinary research and science education in support of Indiana's effort to expand and diversify its economy.

Indiana University-Purdue University Indianapolis School of Science

Related Multiple Sclerosis Articles:

New biomarkers of multiple sclerosis pathogenesis
Multiple sclerosis (MS) is a chronic debilitating inflammatory disease targeting the brain.
Using telemedicine to treat multiple sclerosis
Multiple sclerosis (MS) clinicians face continued challenges in optimizing neurological care, especially for people with advanced MS living in medically underserved communities.
Improving symptom tracking in multiple sclerosis
With a recent two-year, $833,000 grant from the US Department of Defense, kinesiology professor Richard van Emmerik and colleagues at the University of Massachusetts Amherst hope to eventually help an estimated 1 million people worldwide living with progressive multiple sclerosis by creating an improved diagnostic test for this form of the disease, which is characterized by a steady decrease in nervous system function.
An antibody-based drug for multiple sclerosis
Inserm Unit U919, directed by Professor Denis Vivien has developed an antibody with potential therapeutic effects against multiple sclerosis.
Four new risk genes associated with multiple sclerosis discovered
Scientists of the Technical University of Munich and the Max Planck Institute of Psychiatry have identified four new risk genes that are altered in German patients with multiple sclerosis.
PET detects neuroinflammation in multiple sclerosis
The triggers of autoimmune inflammation in multiple sclerosis (MS) have eluded scientists for many years, but molecular imaging is bringing researchers closer to identifying them, while providing a means of evaluating next-generation therapies for MS, say researchers introducing a study at the 2016 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging.
Scientists find genetic cause of multiple sclerosis
Researchers have discovered a rare genetic mutation that makes it probable that a person will develop multiple sclerosis (MS).
ANKRD55: A new gene involved in Multiple Sclerosis is discovered
The Ikerbasque researcher Koen Vandenbroeck, who heads the Neurogenomiks laboratory which reports to the Achucarro centre and the UPV/EHU-University of the Basque Country, together with other national and international groups, has shown that a genetic variant in the 5q11 chromosome, which is associated with susceptibility to developing multiple sclerosis, greatly regulates a gene known as ANKRD55.
Children with and without multiple sclerosis have differences in gut bacteria
In a recent study, children with multiple sclerosis had differences in the abundance of specific gut bacteria than children without the disease.
Rituximab is superior to fingolimod for certain patients with multiple sclerosis
A new study indicates that rituximab is more effective than fingolimod for preventing relapses in patients with highly active multiple sclerosis switching from treatment with natalizumab.

Related Multiple Sclerosis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...