Nav: Home

New evidence on the formation of the solar system

December 01, 2016

International research involving a Monash University scientist is using new computer models and evidence from meteorites to show that a low-mass supernova triggered the formation of our solar system.

The research is published in the most recent issue of leading scientific journal Nature Communications.

About 4.6 billion years ago, a cloud of gas and dust that eventually formed our solar system was disturbed.

The ensuing gravitational collapse formed the proto-Sun with a surrounding disc where the planets were born. A supernova--a star exploding at the end of its life-cycle--would have enough energy to induce the collapse of such a gas cloud.

"Before this model there was only inconclusive evidence to support this theory," said Professor Alexander Heger from the Monash School of Physics and Astronomy.

The research team, led by University of Minnesota School of Physics and Astronomy Professor Yong-Zhong Qian, decided to focus on short-lived radioactive nuclei only present in the early solar system.

Due to their short lifetimes, these nuclei could only have come from the triggering supernova. Their abundances in the early solar system have been inferred from their decay products in meteorites. As the debris from the formation of the solar system, meteorites are comparable to the leftover bricks and mortar in a construction site. They tell us what the solar system is made of and in particular, what short-lived nuclei the triggering supernova provided.

"Identifying these 'fingerprints' of the final supernova is what we needed to help us understand how the formation of the solar system was initiated," Professor Heger said.

"The fingerprints uniquely point to a low-mass supernova as the trigger.

"The findings in this paper have opened up a whole new direction of research focusing on low-mass supernovae," he said.

In addition to explaining the abundance of Beryllium-10, this low-mass supernova model would also explain the short-lived nuclei Calcium-41, Palladium-107, and a few others found in meteorites.

Professor Qian said the group would like to examine the remaining mysteries surrounding short-lived nuclei found in meteorites. The research is funded by the US Department of Energy Office of Nuclear Physics.

Professor Heger and a new Monash Future Fellow, Dr Bernhard Mueller, also study such supernovae using computational facilities at the Minnesota Supercomputing Institute.
-end-
To read the full paper, titled "Evidence from stable isotopes and Be-10 for solar system formation triggered by a low-mass supernova," visit the Nature Communications website

Monash University

Related Supernova Articles:

The big star that couldn't become a supernova
For the first time in history, astronomers have been able to watch as a dying star was reborn as a black hole.
Seeing quadruple: Four images of the same supernova, a rare find
Galaxies bend light through an effect called gravitational lensing that helps astronomers peer deeper into the cosmos.
Explosive material: The making of a supernova
Pre-supernova stars may show signs of instability for months before the big explosion
Search for stellar survivor of a supernova explosion
Astronomers have used the NASA/ESA Hubble Space Telescope to observe the remnant of a supernova explosion in the Large Magellanic Cloud.
Wispy remains of supernova explosion hide possible 'survivor'
This image, taken with NASA's Hubble Space Telescope, shows the supernova remnant SNR 0509-68.7, also known as N103B.
The dawn of a new era for Supernova 1987a
Three decades ago, astronomers spotted one of the brightest exploding stars in more than 400 years.
The supernova that wasn't: A tale of 3 cosmic eruptions
Long-term observations with the Hubble Space Telescope revealed that Eta Carinae, a very massive star system that has puzzled astronomers since it erupted in a supernova-like event in the mid 19th century, has a past that's much more violent than they thought.
Blue is an indicator of first star's supernova explosions
An international collaboration led by the Kavli Institute for the Physics and Mathematics of the Universe have discovered that the color of supernovae during a specific phase could be an indicator for detecting the most distant and oldest supernovae in the Universe -- more than 13 billion years old.
Nearby supernova ashes continue to rain on Earth
Traces of 60Fe detected in space indicate that a nearby supernova occurred within the last few million years.
Supernova iron found on the moon
Approximately two million years ago a star exploded in a supernova close to our solar system: Its traces can still be found today in the form of an iron isotope found on the ocean floor.

Related Supernova Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#518 With Genetic Knowledge Comes the Need for Counselling
This week we delve into genetic testing - for yourself and your future children. We speak with Jane Tiller, lawyer and genetic counsellor, about genetic tests that are available to the public, and what to do with the results of these tests. And we talk with Noam Shomron, associate professor at the Sackler School of Medicine at Tel Aviv University, about technological advancements his lab has made in the genetic testing of fetuses.