Nav: Home

Protective barrier inside chromosomes helps to keep cells healthy

December 01, 2016

Fresh insights into the structures that contain our genetic material could explain how the body's cells stay healthy.

A protective barrier formed inside each of our chromosomes helps to prevent errors occurring when cells divide, researchers say.

The study sheds light on the precise interplay between key factors inside chromosomes that leads to the formation of the barrier.

Findings from the study could help improve understanding of the causes of some diseases - including cancer - that are triggered by errors in the cell division process, the team says.

When cells divide, chromosomes containing our genetic information separate into two new cells, known as daughter cells. Errors in this process can lead to disease, the team says.

Scientists produced an artificial chromosome in the lab to investigate how cells renew themselves - a process known as cell division.

The method has allowed researchers to study key players involved in cell division - which include proteins that form much of the structure of chromosomes, and fragments of DNA that help to orchestrate the process.

The team at the University of Edinburgh focused on a region inside chromosomes - known as the centromere - which plays a pivotal role in the regulation of cell division.

They found that a complex series of steps takes place to form a barrier that prevents centromeres from being invaded and inactivated by other regions of the chromosome. This helps to maintain a fully functional centromere, thereby reducing the chances of errors occurring when the chromosomes separate, the team says.

The study, published in Nature Communications, was funded by the Wellcome Trust. It was carried out in collaboration with the National Institutes of Health in the US, and the Kazusa DNA Research Institute, Japan.

Professor William Earnshaw, of the University of Edinburgh's School of Biological Sciences, who led the study, said: "The creation of a protective barrier shields centromeres from other parts of the chromosome during cell division, which prevents disease-causing errors from occurring. The study was made possible by our unique synthetic chromosome system, which allowed us to study the structure and maintenance of centromeres in remarkable detail."
-end-


University of Edinburgh

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.