For the first time, scientists catch water molecules passing the proton baton

December 01, 2016

Water conducts electricity, but the process by which this familiar fluid passes along positive charges has puzzled scientists for decades.

But in a paper published in the Dec. 2 issue of the journal Science, an international team of researchers has finally caught water in the act -- showing how water molecules pass along excess charges and, in the process, conduct electricity.

"This fundamental process in chemistry and biology has eluded a firm explanation," said co-author Anne McCoy, a professor of chemistry at the University of Washington. "And now we have the missing piece that gives us the bigger picture: how protons essentially 'move' through water."

The team was led by Mark Johnson, senior author and a professor at Yale University. For over a decade, Johnson, McCoy and two co-authors -- professor Kenneth Jordan at the University of Pittsburgh and Knut Asmis, a professor at Leipzig University -- have collaborated to understand how molecules in complex arrangements pass along charged particles.

For water, this is an old question. Chemists call the process by which water conducts electricity the Grotthuss mechanism. When excess protons -- the positively charged subatomic particles within atoms -- are introduced into water, they pass quickly through the fluid, riding a transient, ever-shifting network of loose bonds between water molecules. By the Grotthuss mechanism, a water molecule can pick up an excess charge and pass it along to a neighbor almost instantaneously.

The exchange is fundamental to understanding the behavior of water in biological and industrial settings. But it is also so fast and the vibrations between water molecules so great that the hand-off cannot be captured using traditional spectroscopy -- a technique that scatters light against a molecule to learn about its structure.

"With spectroscopy, you hit objects with a beam of photons, see how those photons are scattered and use that scattering information to determine information about the object's structure and arrangement of atoms," said McCoy. "And this is where Mark Johnson's lab at Yale has really been a leader -- in adapting spectroscopy to better capture this transfer of protons among water molecules."

Johnson's lab, along with collaborators in Asmis's lab in Germany, figured out how to freeze the proton relay to slow the process, giving the researchers time to visualize the Grotthuss mechanism using spectroscopy. When these "spectroscopic snapshots" proved still too blurry due to vibrations in chemical bonds, they switched to studying this mechanism in "heavy water." In heavy water, regular hydrogen atoms are replaced by a heavier isotope called deuterium. By the quirky rules of quantum mechanics that underlie the behavior of subatomic particles, bonds in heavy water shake less than traditional H2O.

But this snapshot required massive amounts of theoretical and computational decoding to reveal just how water molecules momentarily altered their structure to both receive and pass along an extra proton. McCoy's and Jordan's groups helped develop computational approaches to analyze the spectroscopy data.

"In spectroscopy, your goal is to determine the structure of molecules based on how they scatter light," said McCoy. "In our approach, we also asked how the behavior of bonds will affect spectroscopy. That really completed our circle of inquiry and allowed us to visualize this transfer of protons."

In their paper, they describe the Grotthuss mechanism attaching various tag molecules to complexes made up of four molecules of heavy water. According to McCoy, they would like to see how the proton relay changes among larger groups of water molecules and to expand these spectroscopy techniques to include other small molecules with complex structures.
Lead author on the paper is Conrad Wolke at Yale University. Other co-authors are Joseph Fournier of the University of Chicago; Laura Dzugan of The Ohio State University; Matias Fagiani and Harald Knorke of Leipzig University; and Tuguldur Odbadrakh of the University of Pittsburgh. McCoy, who moved to UW from The Ohio State University in 2015, currently maintains labs at both institutions and Dzugan is a member of her research group. The research was funded by the U.S. Department of Energy, the National Science Foundation and the German Research Foundation.

For more information, contact McCoy at 206-543-7464 or

Grant numbers: DE-FG02-06ER15800, DEFG02-06ER15066, CHE-1619660.

University of Washington

Related Spectroscopy Articles from Brightsurf:

Perspectives of infrared spectroscopy in quantitative estimation of proteins
The present review describes the basic principle and the instrumentation of IR spectroscopy along with its advancements.

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

Properties of catalysts studied with gamma ray resonance
Steam-assisted oil extraction methods for heavy deposits have long been the focus of attention at Kazan Federal University.

Researchers demonstrate record speed with advanced spectroscopy technique
Researchers have developed an advanced spectrometer that can acquire data with exceptionally high speed.

Spectroscopy approach poised to improve treatment for serious heart arrhythmia
Researchers have demonstrated that a new mapping approach based on near infrared spectroscopy can distinguish between fat and muscle tissue in the heart.

Late blight research pairs spectroscopy with classic plant pathology diagnostics
Gold and colleagues at the University of Wisconsin-Madison recently published research showing how they used contact spectroscopy to non-destructively sense how plant pathogens differentially damage, impair, and alter plant traits during the course of infection.

Doing more with terahertz: Simplifying near-infrared spectroscopy systems
Researchers from Beihang University, China, and Tokushima University, Japan, have developed a terahertz spectroscopy scheme that offers outstanding resolution using a single laser.

A new horizon for vibrational circular dichroism spectroscopy
(1) The development of solid state and time-step VCD methods opened a new horizon to reveal the mechanism of chirality amplification from microscopic to supramolecular scales.

Unraveling the optical parameters: New method to optimize plasmon enhanced spectroscopy
Plasmon enhanced spectroscopies allow to reach single molecule sensitivity and a lateral resolution even down to sub-molecular resolution.

Nanoscale spectroscopy review showcases a bright future
A new review authored by international leaders in their field, and published in Nature, focuses on the luminescent nanoparticles at the heart of many advances and the opportunities and challenges for these technologies to reach their full potential.

Read More: Spectroscopy News and Spectroscopy Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to