City of Hope developed cancer-killing virus: activates immune system against colon cancer

December 01, 2020

DUARTE, Calif. -- A cancer-killing virus that City of Hope scientists developed could one day improve the immune system's ability to eradicate tumors in colon cancer patients, reports a new study in Molecular Cancer Therapeutics, a journal of the American Association for Cancer Research.

The preclinical research is a first step to showing that City of Hope's oncolytic virus CF33 can target hard-to-treat tumors that "handcuff" the immune system and keep T cells from activating the immune system to kill cancer cells. More specifically, the researchers demonstrated in mouse models that CF33 appears to increase PD-L1 expression in tumor cells and causes them to die in a way that stimulates an influx of activated immune cells.

"CF33 is a safe, innovative virus City of Hope developed that can become a gamechanger because of how potent it is and because of its ability to recruit and activate immune cells," said Susanne Warner, M.D., a surgical oncologist at City of Hope and senior author of the study. "Our oncolytic virus trains the immune system to target a specific cancer cell. Preclinical models show that a combination treatment of oncolytic virus CF33 with anti-PD-L1 checkpoint inhibition leads to lasting anti-tumor immunity, meaning if a similar cancer cell ever tries to regrow, the immune system will be ready and waiting to shut it down."

Colorectal cancer is the third leading cause of cancer-related deaths in the United States and is expected to cause 53,200 deaths in 2020, according to the American Cancer Society. City of Hope researchers are excited about the potential of CF33 to enhance colon cancer treatment and point out that CF33 has been effective preclinically against a wide variety of cancers.

Yuman Fong, M.D., the Sangiacomo Family Chair in Surgical Oncology at City of Hope, and his team created oncolytic virus CF33 and expect to open a clinical trial to test the safety of this treatment in human patients in 2021. This treatment addresses a problem in cancer: Most solid tumors do not respond to checkpoint inhibitors because the "uncloaked tumor cell" still isn't recognized by the immune system, Fong said.

"CF33 selectively infects, replicates in and kills cancer cells. This study demonstrates that a designer virus we created to infect a wide variety of cancers can make tumor cells very recognizable to the immune system," Fong said. He, Warner and other City of Hope physician-scientists are working on turning "cold tumors" resistant to treatment into "hot tumors" that can be killed by a well-trained immune system.

The U.S. Food and Drug Administration has approved only one oncolytic virus thus far: T-VEC, which is a local immunotherapy treatment that kills melanoma cells.

To confirm their hypothesis, City of Hope scientists tested four groups: control with no treatment, anti-PD-L1 alone, CF33 alone, and a combination of CF33 and anti-PD-L1. Results indicated that a combined treatment of City of Hope's oncolytic virus and anti-PD-L1 appeared to be most effective. It also increased CD8+ T cells, which are immune cells that remember previous diseases and are trained to kill them if they are reintroduced later. In other words, the models developed anti-tumor immunity. This means that animals cured of their cancer were effectively immune to future tumor growth.

Fong and colleagues have demonstrated CF33's anti-tumor immune efficacy against triple-negative breast cancer cell lines, in brain tumor cells, in liver cancer models, and in pancreatic, prostate, ovarian, lung and head and neck cancer. Moreover, a recent City of Hope-led study found that CF33 could be combined with chimeric antigen receptor (CAR) T cell therapy to target and eliminate solid tumors that are otherwise difficult to treat with CAR T therapy alone. City of Hope has licensed CF33 to Imugene Limited, a company developing novel therapies that activate the immune system against cancer.

Notably, the CF33 virus may be tracked by non-invasive PET scanning. "If we can perfect the technique, we can give someone a viral injection and watch it work - see where it goes and identify cancer cells that we didn't even know existed," Warner said. "Doctors would have real-time data and know if we should give a patient a higher dose or where to direct the treatment based on tumors that have not yet been killed."

What Warner describes is a developing field called theranostic precision medicine, meaning doctors are able to give patients therapies and concurrently diagnose them to provide the most appropriate treatment for that patient. It is one of many precision medicine approaches City of Hope is developing and offering to patients.

The next step for the current study is to test the innovative CF33 virus platform in different solid tumor models.
-end-
This research was supported by the American Cancer Society Mentored Research Scholar Grant (MRSG-16-047-01-MPC) and through the generosity of the Natalie and David Roberts Family.

About City of Hope

City of Hope is an independent biomedical research and treatment center for cancer, diabetes and other life-threatening diseases. Founded in 1913, City of Hope is a leader in bone marrow transplantation and immunotherapy such as CAR T cell therapy. City of Hope's translational research and personalized treatment protocols advance care throughout the world. Human synthetic insulin and numerous breakthrough cancer drugs are based on technology developed at the institution. A National Cancer Institute-designated comprehensive cancer center and a founding member of the National Comprehensive Cancer Network, City of Hope has been ranked among the nation's "Best Hospitals" in cancer by U.S. News & World Report for 14 consecutive years. Its main campus is located near Los Angeles, with additional locations throughout Southern California. For more information about City of Hope, follow us on Facebook, Twitter, YouTube or Instagram.

City of Hope

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.