Treating brain diseases now possible

December 01, 2020

Neurological diseases of the brain such as dementia, autism and schizophrenia are now a growing social problem. Nevertheless, studies on their definitive cause are still insufficient. Recently, a POSTECH research team has identified the mechanism in which such neurological diseases occur, thus solving the enigma to treating them.

In the case of neurological diseases of the brain, problems arise when certain effects modify the synaptic plasticity and signal transmissions of the brain-derived neurotrophic factor (BDNF), which has a profound effect on the development and differentiation of neurons. The information between nerve cells is transferred through synapses, where the synaptic activity and the synaptic structure are dynamically changed and regulated according to stimulations. During this moment, BDNF has prominent effects on the survival and synaptic plasticity of nerve cells. When it malfunctions, it not only interferes with the smooth information exchange between the brain cells but also kills neurons, leading to learning and memory impairment.

Professor Kyong-Tai Kim and Dr. Young-Seop Jeong of POSTECH's Division of Integrative Biosciences and Biotechnology have identified the mechanism by which BDNF regulates the local expression of AMPA receptors, which are important for synaptic function of nerve cells. The findings of the study were published in the November issue of Science Advances, a prominent international journal.

AMPA receptors are ion channel receptors that glutamic acid acts on and are responsible for excitatory neural signals. They are located on the dendrites' spines of nerve cells and transmit signals when they recognize glutamic acid secreted in the synapses. For synaptic plasticity, it is normal for the AMPA receptors to synthesize locally and efficiently translocate to the postsynaptic membrane according to the strength, duration, and frequency of neural stimulation. The presence of the AMPA receptor mRNA in the dendrites was already known, but the mechanism of how this mRNA is translated into a receptor protein was unknown until now.

The research team found that there is an internal ribosome entry site (IRES) activity in the 5' untranslated region of the AMPA receptor mRNA, and unlike the general method, protein translation increases when a protein hnRNP A2/B1 - an RNA-binding protein - binds to this site.

It was confirmed that the AMPA receptor mRNA, created by transcription from the nucleus, moves to the dendrites and waits there until a simulation occurs to quickly produce receptor proteins in response to various stimuli. In particular, when BDNF stimulates nerve cells, the amount of hnRNP A2/B1 increases, thus promoting the synthesis of AMPA receptor proteins. These proteins locally synthesized in the synapses efficiently carry out the neural signal transduction.

"This is a study that revealed a key mechanism of synaptic plasticity to prevent brain developmental disorders or brain nerve cells from degeneration," explained Professor Kyong-Tai Kim who led the study. "We expect to provide important clues to the treatment of development or degenerative brain diseases such as autism and dementia in the future."
-end-
This research was supported by the Brain Research Program and the Mid-Career Researcher Program of the National Research Foundation of Korea (NRF) and the Next Generation BioGreen 21 Program of the Rural Development Administration of Korea.

Pohang University of Science & Technology (POSTECH)

Related Nerve Cells Articles from Brightsurf:

Nerve cells let others "listen in"
How many ''listeners'' a nerve cell has in the brain is strictly regulated.

Nerve cells with energy saving program
Thanks to a metabolic adjustment, the cells can remain functional despite damage to the mitochondria.

Why developing nerve cells can take a wrong turn
Loss of ubiquitin-conjugating enzyme leads to impediment in growth of nerve cells / Link found between cellular machineries of protein degradation and regulation of the epigenetic landscape in human embryonic stem cells

Unique fingerprint: What makes nerve cells unmistakable?
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain.

Ragweed compounds could protect nerve cells from Alzheimer's
As spring arrives in the northern hemisphere, many people are cursing ragweed, a primary culprit in seasonal allergies.

Fooling nerve cells into acting normal
In a new study, scientists at the University of Missouri have discovered that a neuron's own electrical signal, or voltage, can indicate whether the neuron is functioning normally.

How nerve cells control misfolded proteins
Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Research confirms nerve cells made from skin cells are a valid lab model for studying disease
Researchers from the Salk Institute, along with collaborators at Stanford University and Baylor College of Medicine, have shown that cells from mice that have been induced to grow into nerve cells using a previously published method have molecular signatures matching neurons that developed naturally in the brain.

Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.

Read More: Nerve Cells News and Nerve Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.