Multi-center, multi-tracer PET studies harmonized to detect neuroinflammation in ALS

December 01, 2020

Reston, VA--A novel ALS (amyotrophic lateral sclerosis) study has pooled data from multiple sites to effectively visualize neuroinflammation, which is key to developing drugs to treat the disease. Pooling data acquired from different scanners, different neuroinflammation positron emission tomography (PET) markers and different sites enhanced researchers' ability to detect neuroinflammation in ALS patients. This research was published in the November issue of The Journal of Nuclear Medicine.

ALS is a rare and fatal neurodegenerative disease that causes progressive weakness, respiratory failure and eventual death. Developing drugs to treat the disease is uniquely challenging because it is so rare. "In rare diseases such as ALS, only a limited pool of participants is available to participate in imaging studies," noted Donatienne Van Weehaeghe, MD, PhD, researcher in the department of imaging and pathology at University Hospital Leuven in Leuven, Belgium. "Therefore, conducting collaborative research across various sites and bringing in data to a common analysis pool is valuable to accelerate imaging biomarker development."

The study investigated two second-generation translator protein (TSPO) tracers, 18F-DPA714 and 11C-PBR28, that are currently being developed in the United States and Europe as promising ALS biomarkers. Researchers first sought to validate the established 11C-PBR28 PET pseudo reference analysis technique (which is used as a substitute for full dynamic modeling) for 18F-DPA714; they then evaluated whether multicenter data pooling of 18F-DPA714 and 11C-PBR28 data was feasible.

ALS patients and healthy volunteers from the United States and Belgium were recruited for the study and underwent dynamic 18F-DPA714 or 11C-PBR28 PET/MRI (magnetic resonance imaging). Data from the 18F-DPA714 or 11C-PBR28 images were analyzed, and results were compared.

The pseudo reference analysis technique was found to produce results comparable to those of gold standard PET analyses obtained by full dynamic modeling. The most sensitive pseudo reference region was whole brain without ventricles. Analysis of the 18F-DPA714 and 11C-PBR28 data from multiple sites showed a much greater power to detect inflammation compared to individual site data alone.

"In this exciting study, we have shown the ability to pool together and analyze brain neuroinflammation PET imaging data acquired at multiple institutions with varying scanner capabilities, using state-of-the-art analytical tools. This is the essential first step for bringing cutting-edge research closer to ALS patients globally and for accelerating the pace of biomarker readouts for future ALS clinical trials," said Suma Babu, MBBS, MPH, assistant professor of neurology at Harvard Medical School and physician investigator at Massachusetts General Hospital in Boston, Massachusetts. "This approach could reduce time and travel burden for patients, allowing them to participate in novel biomarker research while remaining close to home. From a scientific study conduct standpoint, this approach retains scientific rigor, increases statistical power, reduces trial durations and reduces risks of attrition."

"Developing mechanistic central nervous system biomarkers that can be acquired across multiple study sites would greatly accelerate the pace of finding effective treatments for neurodegenerative diseases, including ALS," said Nazem Atassi, MD, MMSc, associate professor of neurology at Harvard Medical School and head of early neuro-development at Sanofi-Genzyme.

PET imaging of neuroinflammation is relevant to multiple neurological conditions, not just ALS. "The ability to combine data across different radiotracers allows researchers to build on the foundation laid by prior research without the need to start from scratch every time with a new radioligand. If ongoing and future collaborative research in this field is successful, it could directly impact the use of PET imaging markers in future clinical trials testing anti-neuroinflammatory medications in ALS and other neurological conditions," remarked Van Weehaeghe.
This study was made available online in March 2020 ahead of final publication in print in November 2020.

The authors of "Moving toward Multicenter Therapeutic Trials in Amyotrophic Lateral Sclerosis: Feasibility of Data Pooling Using Different Translocator Protein PET Radioligands," include Donatienne Van Weehaeghe, Michel Koole, Ahmadreza Rezaei, Georg Schramm and Koen Van Laere, Nuclear Medicine Subdivision, Department of Imaging and Pathology, University Hospital Leuven, Leuven, Belgium; Suma Babu, Sheena Chew and Nazem Atassi, Department of Neurology, Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Joke De Vocht and Philip Van Damme, Department of Neurology, University Hospital Leuven, and Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium; and Nicole R. Zürcher, Chieh-En J. Tseng, Marco L. Loggia and Jacob M. Hooker, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.

Please visit the SNMMI Media Center for more information about molecular imaging and precision imaging. To schedule an interview with the researchers, please contact Rebecca Maxey at (703) 652-6772 or

About the Society of Nuclear Medicine and Molecular Imaging

The Journal of Nuclear Medicine (JNM) is the world's leading nuclear medicine, molecular imaging and theranostics journal, accessed close to 10 million times each year by practitioners around the globe, providing them with the information they need to advance this rapidly expanding field. Current and past issues of The Journal of Nuclear Medicine can be found online at

JNM is published by the Society of Nuclear Medicine and Molecular Imaging (SNMMI), an international scientific and medical organization dedicated to advancing nuclear medicine and molecular imaging--precision medicine that allows diagnosis and treatment to be tailored to individual patients in order to achieve the best possible outcomes. For more information, visit

Koen Van Laere and Philip Van Damme are senior clinical investigators of the Fund for Scientific Research, Flanders, Belgium (FWO). Donatienne Van Weehaeghe is a PhD fellow of the FWO (1179620N). Philip Van Damme is supported through the E. von Behring Chair for Neuromuscular and Neurodegenerative Disorders, the ALS Liga Belgi¨e and KU Leuven funds ''Een Hart voor ALS'' and ''Laeversfonds voor ALS Onderzoek,'' and the ''Val´ery Perrier race against ALS'' fund. Nazem Atassi is supported through NIHK23-NS083715, the Muscular Dystrophy Association, the ALS Association, and ALS Finding a Cure. The postdoc position of Georg Schramm is funded by NIH grant 1P41EB017183-01A1. No other potential conflict of interest relevant to this article was reported.

Society of Nuclear Medicine and Molecular Imaging

Related Amyotrophic Lateral Sclerosis Articles from Brightsurf:

Converting lateral scanning into axial focusing to speed up 3D microscopy
In optical microscopy, high-speed volumetric imaging is limited by either the slow axial scanning rate or aberrations introduced by the z-scanning mechanism.

Ammonium triggers formation of lateral roots
Despite the importance of changes in root architecture to exploit local nutrient patches, mechanisms integrating external nutrient signals into the root developmental program remain poorly understood.

'Reelin' in a new treatment for multiple sclerosis
In an animal model of multiple sclerosis (MS), decreasing the amount of a protein made in the liver significantly protected against development of the disease's characteristic symptoms and promoted recovery in symptomatic animals, UTSW scientists report.

Adjustable lordotic expandable vs static lateral lumbar interbody fusion devices
The objective of this study is to compare the clinical and radiographic outcomes between patients treated with static and expandable interbody spacers with adjustable lordosis for MIS LLIF.

Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation
Chiral nanoparticles which twist the light were theoretically predicted to experience lateral forces perpendicular to light vector but lacks experimental verification.

Not all multiple sclerosis-like diseases are alike
Scientists say some myelin-damaging disorders have a distinctive pathology that groups them into a unique disease entity.

Researchers delay onset of amyotrophic lateral sclerosis (ALS) in laboratory models
Scientists have delayed the onset of amyotrophic lateral sclerosis (ALS) in laboratory models, leaving them cautiously optimistic that the result, combined with other clinical advances, points to a potential treatment for ALS in humans.

Emerging role of adenosine in brain disorders and amyotrophic lateral sclerosis
The role of adenosine in neurodegeneration and neuroregeneration has led to growing attention on adenosine receptors as potential drug targets in a range of brain disorders, including neuroregenerative therapy and treatment for amyotrophyic lateral sclerosis (ALS).

New clues about the origins of familial forms of Amyotrophic lateral sclerosis
A Brazilian study made important progress in understanding the accumulation of one of the proteins involved in amyotrophic lateral sclerosis (ALS).

Recrutement of a lateral root developmental pathway into root nodule formation of legumes
Peas and other legumes develop spherical or cylindrical structures -- called nodules -- in their roots to establish a mutually beneficial relationship with bacteria that convert atmospheric nitrogen into a useable nutrient for the legume plant.

Read More: Amyotrophic Lateral Sclerosis News and Amyotrophic Lateral Sclerosis Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to