How to spot winning sperm: examine their racing stripes

December 01, 2020

Millions of sperm enter the race to fertilize, but only one wins the sprint to the egg.

Now Yale researchers have discovered that these winning sperm possess a few key molecular characteristics that differentiate them from those left behind, they report Dec. 1 in the journal eLife.

Sperm tails are lined with channels containing pores for entry of calcium which help sperm move through the female reproductive tract. Each pore of these calcium channels is comprised of four subunits, CatSper 1 through 4, which work together to serve functions such as controlling the mobility and navigation of the sperm.

Researchers playfully describe them as the sperm's racing stripes.

A team of Yale scientists led by Jean-Ju Chung, assistant professor of cellular and molecular physiology, found one of the subunits that form these racing stripes is critical in sperm selection for fertilization.

Using 3D molecular imaging and artificial neural network modeling, Chung's lab devised a way to visually track and quantify sperm in the reproductive tracts of female mice after mating. They discovered that the sperm which advanced from uterus to oviduct had the channels containing intact Catsper1 subunit. Other sperm likely lost functioning CatSper ion channels by losing intact CatSper1. These sperm become immobile and are left behind.

Sperm that make it far into the female reproductive tract share other characteristics: they tend to have already lost a cap-like structure called the acrosome in the sperm head, likely a prelude to fertilizing the egg.

The insights into molecular signatures of sperm and interactions within the reproductive tract may help inform new treatments for infertility or conversely, male birth control. Mutations have been found in the CatSper genes of infertile men and could be a target for fertility treatments. Since the CatSper channel is necessary for sperm to function, blocking it could lead to development of non-hormonal contraceptives with minimal side effects in both men and women, Chung said.

"Better understanding how the fittest sperm cells are selected and how those left are eliminated after fertilization in the female reproductive tract can improve current strategies for assisted reproduction," Chung said.
Yale's Lukas Ded is lead author of the study, which was supported by the National Institutes of Health and funding from the Goodman-Gilman Scholar Award, which Chung won in 2015.

Yale University

Related Calcium Articles from Brightsurf:

A new strategy for the greener use of calcium carbide
Computational chemists from St Petersburg University and the Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences have developed a new strategy for using calcium acetylide in the synthesis of organic compounds.

New link between calcium and cardiolipin in heart defects
To function properly, the heart needs energy from cells' powerhouses, the mitochondria.

'Give me the calcium!' Tulane virus takes over cellular calcium signaling to replicate
Researchers uncover the first piece of functional evidence suggesting that Tulane virus and human norovirus use viroporins to control cellular calcium signaling.

Carbon dots make calcium easier to track
Prof. DONG Wenfei's research group from the Suzhou Institute of Biomedical Engineering and Technology (SIBET) has developed a new type of fluorescent carbon dot that can effectively detect calcium levels in cells.

Calcium batteries: New electrolytes, enhanced properties
Calcium-based batteries promise to reach a high energy density at low manufacturing costs.

Chelated calcium benefits poinsettias
Cutting quality has an impact on postharvest durability during shipping and propagation of poinsettias.

New study uncovers the interaction of calcium channels
Korean researchers have identified the interactions of the combinants among calcium channel proteins that exist in nerve and heart cells.

Calcium-catalyzed reactions of element-H bonds
Calcium-catalyzed reactions of element-H bonds provide precise and efficient tools for hydrofunctionalization.

A bioengineered tattoo monitors blood calcium levels
Scientists have created a biomedical tattoo that becomes visible on the skin of mice in response to elevated levels of calcium in the blood.

The dinosaur menu, as revealed by calcium
By studying calcium in fossil remains in deposits in Morocco and Niger, researchers have been able to reconstruct the food chains of the past, thus explaining how so many predators could coexist in the dinosaurs' time.

Read More: Calcium News and Calcium Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to