New immunotherapeutic approach takes aim at cancer's enzyme shield

December 01, 2020

Immunotherapies have transformed the landscape of cancer treatment by allowing physicians to alter or augment patients' immune response to better attack malignant tumors. But some tumors -- known as "cold tumors" -- fly under the immune system's radar. Checkpoint inhibitors, which are the basis of many immunotherapies, don't work well against them. A team of investigators, led by researchers from Brigham and Women's Hospital, have focused on a protein called SerpinB9 (Sb9) with a potential role in cancer cells that has been underappreciated, but which could open the door to a new immunotherapy approach. The team observed that in a range of mouse models, inhibiting Sb9 with a small molecule reduced tumor growth both by weakening the tumor's defense mechanisms and by triggering cell death in the tumors themselves. The findings are published in Cell.

"In this study, we showed proof of concept using a small molecule that is designed to kill the cancer using its own lytic enzyme machinery," said corresponding author Reza Abdi, MD, of the Division of Renal Medicine at the Brigham. "Immunotherapies like monoclonal antibodies or checkpoint inhibitors are promising, heavily studied strategies, but antibodies are very hard to engineer and can also pose toxic effects to patients. A small molecule that inhibits the function of Sb9 could be simpler to develop, and potentially be more effective."

The researchers had known that in normal immune cells, Sb9 acts as a shield against the cells' own destructive enzymes, called granzyme B (GrB) enzymes. GrB enzymes are secreted to attack invading cells. However, the presence of Sb9 and GrB in cancer cells was not widely known. When the researchers examined a variety of human and mouse tumors, they saw heavy expression of Sb9, which could allow the tumor to resist attacks from GrB.

Using gene-editing CRISPR-Cas9 technology, the researchers engineered tumors that lack Sb9 and found that these tumors grew at a slower rate in mice. But they also observed that Sb9 was expressed in cancer-associated fibroblasts and immunosuppressive cells surrounding the tumor, which promote the growth of the cancer by weakening immune responses leveled against it.

"The initial findings showed that the tumor without the Sb9 protein grows slower. However, when we implanted knocked out Sb9 tumors in mice which lack Sb9, we observed a more notable reduction in tumor size," Abdi said. "These results suggested that if we could come up with a drug that systemically inhibits this protein in the tumor and in the cells of the host, we could get a synergistic benefit by simultaneously targeting various pathogenic arms of tumor formation, including the tumor, cancer-associated fibroblasts, and immunosuppressive cells."

The researchers developed a specific, small-molecule inhibitor that binds to Sb9 and inhibits its function in mice. Notably, the small molecule was effective in suppressing several murine models of solid tumors.

Abdi acknowledged that a significant amount of work still needs to be done to further optimize the binding kinetics of the small-molecule inhibitors of Sb9 and to determine the structural basis of interactions, and that rigorous toxicity testing must be completed before a drug can be taken to clinic.

"This protein could be extremely important for future cancer therapies, and the research community might have a better way to target this protein," Abdi said. "At the end of the day, we are excited to be amongst the very first to make a drug for this new target and show its potential as a novel approach to cancer therapy."
-end-
This work was carried out in collaboration with Sirano Dhe-Paganon, PhD, at the Structural and Chemical Biology Center at Dana-Farber Cancer Institute and Gregory Heffron at the Department of Biological Chemistry and Molecular Pharmacology at Harvard Medical School. This work was supported by the National Institute of Allergy and Infectious Diseases and Office of the Director of the National Institutes of Health (R01-AI132963 and R24-OD018259) and by a National Cancer Institute Core grant (CA034196).

Paper cited: Abdi, R et al. "Direct Tumor Killing and Immunotherapy through Anti-SerpinB9 Therapy" Cell DOI: 10.1016/j.cell.2020.10.045.

Brigham and Women's Hospital

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.