Cancer cells 'remove blindfold' to spread

December 01, 2020

Cancer cells spread by switching on and off abilities to sense their surroundings, move, hide and grow new tumours, a new study has found.

This sensitivity to their surroundings is the key ability that makes small numbers of cancer cells better at spreading than other cells in a tumour, scientists at the University of Reading discovered.

The researchers developed a new method combining evolutionary biology and artificial intelligence techniques to study the movement and shape of cancer cells in more detail than ever, to learn why some can move more easily to different parts of the body and grow new tumours.

They found some cells displayed an apparent 'awareness' and ability to react to their surroundings, that was previously thought to be lost in of cancer. This means they may be able to adapt their shape to navigate barriers like blood vessel walls or other competing cells far more efficiently in order to replicate elsewhere.

The findings, published in the journal Proceedings of the Royal Society B, may help to explain why some cancers prove more aggressive than others, and could in the future allow doctors to target these 'super cells' before they spread, giving future cancer patients a greater chance of recovery.

George Butler, a mathematical biologist at the University of Reading who led the study, said: "Unlike healthy human cells, cancer cells were thought to lose their sense of what is around them early in cancer progression, meaning they are effectively blindfolded to their surroundings, focusing instead on replicating to form the primary tumour. Our observations showed for the first time that some cancer cells are able to switch this awareness back on, removing the blindfold to help them move to other locations more efficiently.

"These more spatially-aware cells react by changing shape when they encounter objects, perhaps allowing them to slide past other cells, through membranes into the blood stream and arrive in other parts of the body, where they switch back into replication mode and form new tumours."

Scientists first put a sample of breast cancer cells through a natural selection process in order to evolve sets with enhanced movement or colonisation traits.

Some cells were put into an 'obstacle course', mimicking movement around a human body, with the most successful separated into a group with strong mobility traits. Others were allowed to grow in a small piece of rat lung, resembling the kind of tissue where tumours form, to form a group of strong colonisers.

The two groups of cells were compared against a control group in the lab so scientists could examine the differences between them in detail to learn what makes some better at moving than others.

A computer programme was used to observe the behaviour of the cells in plastic dishes, to analyse their shape and movement far more quickly than a human could.

The mobile group of cells that were more closely packed together were seen to change shape more rapidly to avoid neighbouring cells, while they changed shape less frequently in more sparse environments. This suggests they are able to raise or lower their spatial awareness depending on their surroundings to make them more efficient in all environments.

The new methods of computer vision analysis developed by the team could also be used in other contexts, for example to measure the formation of blood clots or track the movements of sperm cells.

University of Reading

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to