Molecular memories, once doubted, prove durable and practical

December 02, 2003

In the ongoing quest to create computing devices that are both incredibly small and incredibly powerful, scientists - envisioning a future beyond the limits of traditional semiconductors - have been working to use molecules for information storage and processing.

Until now, researchers were skeptical that such molecular devices could survive the rigors of real-world manufacturing and use, which involve high temperatures and up to one trillion operational cycles. But scientists at the University of California, Riverside and North Carolina State University have demonstrated that molecular memories are indeed both durable and practical - a finding that could spur development of the technology.

The scientists' results, in a paper titled "Molecular Memories that Survive Silicon Device Processing and Real-World Operation," are described in the Nov. 28 issue of the journal Science.

Dr. Jonathan S. Lindsey, Glaxo Distinguished University Professor of Chemistry at NC State and one of the paper's authors, said the team was faced with a very basic problem. "If molecular materials can't compete against semiconductor materials under the rigorous conditions of the real world," he said, "then trying to implement them in electronic devices would be pointless. Because our goal is to develop molecule-based memory devices, we first had to test their durability and stability."

Led by Dr. David F. Bocian, professor of chemistry at the University of California, Riverside, the team attached porphyrins - disk-shaped organic molecules similar to chlorophyll - with specific electronic properties to an electroactive surface, storing information in the form of the molecules' positive charges.

After a series of tests, the scientists found that the resulting molecular memories were "extremely robust" and offered clear advantages over traditional semiconductor-based technology.

"The porphyrin-based information-storage elements exhibit charge-retention times that are long (minutes) compared with those of the semiconductor elements in dynamic random access devices (tens of milliseconds)," the university chemists report in their paper.

In addition, their testing showed that such molecule-based information-storage devices "meet the processing and operating challenges required for use in electronic devices." In particular, they proved that "these molecules are stable under extremes of temperature (400°C) and large numbers of read-write cycles (1 trillion)."

That demonstrated stability, they conclude, "indicates that these molecular architectures can be readily adapted to current semiconductor fabrication technology and operated under the conditions required for a practical device."

By establishing the practicality of molecular memories, says Lindsey, the findings should help eliminate doubts about the role of organic materials in electronic devices.

"There is a perception that organic molecules are fragile," Lindsey said. "The critical question has been whether, given the high temperatures and other stresses of production and use, any molecule-based devices could meet functionality standards. I believe our research has laid this question to rest, and demonstrated that appropriately chosen molecules can readily function in practical devices."

That knowledge, he said, should speed development of molecule-based electronics, which promise smaller, faster and far more powerful computers and other applications.
-end-
The research was funded by ZettaCore Inc. and the Defense Advanced Research Projects Agency (DARPA) Moletronics Program. Bocian and Lindsey are co-founders of ZettaCore and serve as consultants for the company.

Note to editors: An abstract of the paper follows.

"Molecular Memories that Survive Silicon Device Processing and Real-World Operation"
Authors: David F. Bocian, Zhiming Liu, Amir A. Yasseri, University of California, Riverside; Jonathan S. Lindsey, North Carolina State University.
Published: Nov. 28, 2003, in Science.
Abstract: If molecular components are to be used as functional elements in place of the semiconductor-based devices present in conventional micro-circuitry, they must compete with semiconductors under the extreme conditions required for processing and operating practical devices. Herein, we demonstrate that porphyrin-based molecules bound to Si (100), which exhibit redox behavior useful for information storage, can meet this challenge. These molecular media in an inert atmosphere are stable under extremes of temperature (400° C) for extended periods (approaching 1 hour) and do not degrade under large numbers of read-write cycles (10¹²).

Further Media Contacts: Paul K. Mueller, News Services, 919-515-3470

North Carolina State University

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.